
ScienceDirect
IFAC-PapersOnLine 48-7 (2015) 023–028

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2015.06.468

Pablo Oliveira Antonino et al. / IFAC-PapersOnLine 48-7 (2015) 023–028

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

I-SafE: An integrated Safety Engineering Tool

Pablo Oliveira Antonino, David Santiago Velasco Moncada, Daniel Schneider, Mario Trapp, Jan Reich

Embedded Systems Division, Fraunhofer IESE, Kaiserslautern, Germany
{Pablo.Antonino, Santiago.Velasco, Daniel.Schneider, Mario.Trapp, Jan.Reich}@iese.fraunhofer.de)

Abstract: Traditionally, safety engineering has been a matter of tables and textual documents and even of
pen and paper. Even in the age of computerization, this did has not really changed significantly, as the
state of the practice in safety engineering is nowadays dominated by Excel sheets and Word files.
Nevertheless, a range of computer-aided safety analysis and modeling techniques have emerged and are
being put to good use. The problem here is, however, that there is a lack of profound integration between
different safety artifacts on the one hand and the general engineering artifacts on the other hand. In
addition, between the different safety analysis techniques and the regular engineering techniques, there is
usually a range of different tools in use that are not really compatible with each other. To overcome this
problem, we conceptualized and implemented an integrated multi-analyses and multi-viewpoint safety
engineering tool that enables tight integration between different models within and across different
engineering disciplines. This paper gives an overview of the main features of this tool.

Keywords: Safety analysis, safety requirements, architecture, failure model, traceability.

1. INTRODUCTION

Safety engineering artifacts have been defined by means of
natural text in documents, spreadsheets, or databases.
Sometimes, graphical notations like the Goal Structuring
Notation (GSN) (Birch, et al., 2013) and UML (Object
Management Group, 2008) are used to provide a more
structured overview. Nevertheless, the lack of an underlying
formalism of these approaches is a key factor that leads to
their incompleteness and inconsistency. For instance, it is still
challenging to ensure consistency between artifacts such as
safety requirements, failure models, architecture
specifications, source code, and test cases. The consequences
of this incompleteness and inconsistency become more
evident when the system has to be maintained because of, for
instance, requirements changes, or system element reuse or
modification (Adler, 2013).

One major aspect of this challenge is inconsistency between
safety requirements, failure models, and architecture
(Antonino & Trapp, 2014). As these are usually created by
different teams and in different moments and environments
of the system development, they are very often completely
disassociated. However, the safety requirements often result
from a safety analysis of the architecture, and, lately, must be
allocated to elements of the architecture (International
Organization for Standardization, 2011). In this regard, the
existing inconsistencies and incompleteness result in
intensive efforts to update the artifacts impacted by the
changes, and, consequently, significantly decrease the
efficiency of the safety assurance architecture (Hatcliff, et al.,
2014).

To contribute to overcoming this challenge, in this paper we
introduce I-SafE: Integrated Safety Engineering, which is an

Enterprise Architect1 extension for supporting safety analysis
and the establishment of traceability among safety
requirements, failure models, and architecture specification.

With respect to the safety analysis features, I-SafE supports
(i) the creation of failure models of the types Component
Fault Trees (Domis & Trapp, 2009), Failure Mode and Effect
Analysis (Stadler & Seidl, 2013), and Markov Chains
(Grinstead & Snell, 2006), which are tightly integrated with
elements of the architecture specification, and (ii) the
automated execution of safety analyses based on minimal cut
sets and top-event probability calculations.

With respect to the traceability establishment, it offers (i)
decision support for specifying safety requirements with
natural language that are traceable to failure models and to
the architecture, (ii) visualization mechanisms for identifying
failure models and architecture elements impacted by safety
requirements, and (iii) a set of automatic consistency and
completeness checks that, among other things, detect
inconsistencies in Safety Integrity Levels (SIL)
(International Organization for Standardization, 2011).

The remainder of this paper is organized as follows: Section
2 briefly presents a running example. Section 3 presents how
I-SafE supports the creation of failure models. Section 4
subsequently describes how safety analyses based on these
models can be performed. Section 5 introduces an I-SafE
feature enabling the creation of natural language safety
requirements that are linked to elements of the architecture
and of failure models. Section 6 presents the I-SafE Visual
Trace feature and Section 7 the completeness and consistency
checks. Section 8 provides a brief overview of related work
and Section 9 concludes the paper.

1 http://www.sparxsystems.com

Proceedings of the 5th IFAC Workshop on
Dependable Control of Discrete Systems
May 27-29, 2015. Cancun, Mexico

Copyright © 2015 IFAC 23

I-SafE: An integrated Safety Engineering Tool

Pablo Oliveira Antonino, David Santiago Velasco Moncada, Daniel Schneider, Mario Trapp, Jan Reich

Embedded Systems Division, Fraunhofer IESE, Kaiserslautern, Germany
{Pablo.Antonino, Santiago.Velasco, Daniel.Schneider, Mario.Trapp, Jan.Reich}@iese.fraunhofer.de)

Abstract: Traditionally, safety engineering has been a matter of tables and textual documents and even of
pen and paper. Even in the age of computerization, this did has not really changed significantly, as the
state of the practice in safety engineering is nowadays dominated by Excel sheets and Word files.
Nevertheless, a range of computer-aided safety analysis and modeling techniques have emerged and are
being put to good use. The problem here is, however, that there is a lack of profound integration between
different safety artifacts on the one hand and the general engineering artifacts on the other hand. In
addition, between the different safety analysis techniques and the regular engineering techniques, there is
usually a range of different tools in use that are not really compatible with each other. To overcome this
problem, we conceptualized and implemented an integrated multi-analyses and multi-viewpoint safety
engineering tool that enables tight integration between different models within and across different
engineering disciplines. This paper gives an overview of the main features of this tool.

Keywords: Safety analysis, safety requirements, architecture, failure model, traceability.

1. INTRODUCTION

Safety engineering artifacts have been defined by means of
natural text in documents, spreadsheets, or databases.
Sometimes, graphical notations like the Goal Structuring
Notation (GSN) (Birch, et al., 2013) and UML (Object
Management Group, 2008) are used to provide a more
structured overview. Nevertheless, the lack of an underlying
formalism of these approaches is a key factor that leads to
their incompleteness and inconsistency. For instance, it is still
challenging to ensure consistency between artifacts such as
safety requirements, failure models, architecture
specifications, source code, and test cases. The consequences
of this incompleteness and inconsistency become more
evident when the system has to be maintained because of, for
instance, requirements changes, or system element reuse or
modification (Adler, 2013).

One major aspect of this challenge is inconsistency between
safety requirements, failure models, and architecture
(Antonino & Trapp, 2014). As these are usually created by
different teams and in different moments and environments
of the system development, they are very often completely
disassociated. However, the safety requirements often result
from a safety analysis of the architecture, and, lately, must be
allocated to elements of the architecture (International
Organization for Standardization, 2011). In this regard, the
existing inconsistencies and incompleteness result in
intensive efforts to update the artifacts impacted by the
changes, and, consequently, significantly decrease the
efficiency of the safety assurance architecture (Hatcliff, et al.,
2014).

To contribute to overcoming this challenge, in this paper we
introduce I-SafE: Integrated Safety Engineering, which is an

Enterprise Architect1 extension for supporting safety analysis
and the establishment of traceability among safety
requirements, failure models, and architecture specification.

With respect to the safety analysis features, I-SafE supports
(i) the creation of failure models of the types Component
Fault Trees (Domis & Trapp, 2009), Failure Mode and Effect
Analysis (Stadler & Seidl, 2013), and Markov Chains
(Grinstead & Snell, 2006), which are tightly integrated with
elements of the architecture specification, and (ii) the
automated execution of safety analyses based on minimal cut
sets and top-event probability calculations.

With respect to the traceability establishment, it offers (i)
decision support for specifying safety requirements with
natural language that are traceable to failure models and to
the architecture, (ii) visualization mechanisms for identifying
failure models and architecture elements impacted by safety
requirements, and (iii) a set of automatic consistency and
completeness checks that, among other things, detect
inconsistencies in Safety Integrity Levels (SIL)
(International Organization for Standardization, 2011).

The remainder of this paper is organized as follows: Section
2 briefly presents a running example. Section 3 presents how
I-SafE supports the creation of failure models. Section 4
subsequently describes how safety analyses based on these
models can be performed. Section 5 introduces an I-SafE
feature enabling the creation of natural language safety
requirements that are linked to elements of the architecture
and of failure models. Section 6 presents the I-SafE Visual
Trace feature and Section 7 the completeness and consistency
checks. Section 8 provides a brief overview of related work
and Section 9 concludes the paper.

1 http://www.sparxsystems.com

Proceedings of the 5th IFAC Workshop on
Dependable Control of Discrete Systems
May 27-29, 2015. Cancun, Mexico

Copyright © 2015 IFAC 23

I-SafE: An integrated Safety Engineering Tool

Pablo Oliveira Antonino, David Santiago Velasco Moncada, Daniel Schneider, Mario Trapp, Jan Reich

Embedded Systems Division, Fraunhofer IESE, Kaiserslautern, Germany
{Pablo.Antonino, Santiago.Velasco, Daniel.Schneider, Mario.Trapp, Jan.Reich}@iese.fraunhofer.de)

Abstract: Traditionally, safety engineering has been a matter of tables and textual documents and even of
pen and paper. Even in the age of computerization, this did has not really changed significantly, as the
state of the practice in safety engineering is nowadays dominated by Excel sheets and Word files.
Nevertheless, a range of computer-aided safety analysis and modeling techniques have emerged and are
being put to good use. The problem here is, however, that there is a lack of profound integration between
different safety artifacts on the one hand and the general engineering artifacts on the other hand. In
addition, between the different safety analysis techniques and the regular engineering techniques, there is
usually a range of different tools in use that are not really compatible with each other. To overcome this
problem, we conceptualized and implemented an integrated multi-analyses and multi-viewpoint safety
engineering tool that enables tight integration between different models within and across different
engineering disciplines. This paper gives an overview of the main features of this tool.

Keywords: Safety analysis, safety requirements, architecture, failure model, traceability.

1. INTRODUCTION

Safety engineering artifacts have been defined by means of
natural text in documents, spreadsheets, or databases.
Sometimes, graphical notations like the Goal Structuring
Notation (GSN) (Birch, et al., 2013) and UML (Object
Management Group, 2008) are used to provide a more
structured overview. Nevertheless, the lack of an underlying
formalism of these approaches is a key factor that leads to
their incompleteness and inconsistency. For instance, it is still
challenging to ensure consistency between artifacts such as
safety requirements, failure models, architecture
specifications, source code, and test cases. The consequences
of this incompleteness and inconsistency become more
evident when the system has to be maintained because of, for
instance, requirements changes, or system element reuse or
modification (Adler, 2013).

One major aspect of this challenge is inconsistency between
safety requirements, failure models, and architecture
(Antonino & Trapp, 2014). As these are usually created by
different teams and in different moments and environments
of the system development, they are very often completely
disassociated. However, the safety requirements often result
from a safety analysis of the architecture, and, lately, must be
allocated to elements of the architecture (International
Organization for Standardization, 2011). In this regard, the
existing inconsistencies and incompleteness result in
intensive efforts to update the artifacts impacted by the
changes, and, consequently, significantly decrease the
efficiency of the safety assurance architecture (Hatcliff, et al.,
2014).

To contribute to overcoming this challenge, in this paper we
introduce I-SafE: Integrated Safety Engineering, which is an

Enterprise Architect1 extension for supporting safety analysis
and the establishment of traceability among safety
requirements, failure models, and architecture specification.

With respect to the safety analysis features, I-SafE supports
(i) the creation of failure models of the types Component
Fault Trees (Domis & Trapp, 2009), Failure Mode and Effect
Analysis (Stadler & Seidl, 2013), and Markov Chains
(Grinstead & Snell, 2006), which are tightly integrated with
elements of the architecture specification, and (ii) the
automated execution of safety analyses based on minimal cut
sets and top-event probability calculations.

With respect to the traceability establishment, it offers (i)
decision support for specifying safety requirements with
natural language that are traceable to failure models and to
the architecture, (ii) visualization mechanisms for identifying
failure models and architecture elements impacted by safety
requirements, and (iii) a set of automatic consistency and
completeness checks that, among other things, detect
inconsistencies in Safety Integrity Levels (SIL)
(International Organization for Standardization, 2011).

The remainder of this paper is organized as follows: Section
2 briefly presents a running example. Section 3 presents how
I-SafE supports the creation of failure models. Section 4
subsequently describes how safety analyses based on these
models can be performed. Section 5 introduces an I-SafE
feature enabling the creation of natural language safety
requirements that are linked to elements of the architecture
and of failure models. Section 6 presents the I-SafE Visual
Trace feature and Section 7 the completeness and consistency
checks. Section 8 provides a brief overview of related work
and Section 9 concludes the paper.

1 http://www.sparxsystems.com

Proceedings of the 5th IFAC Workshop on
Dependable Control of Discrete Systems
May 27-29, 2015. Cancun, Mexico

Copyright © 2015 IFAC 23

24	 Pablo Oliveira Antonino et al. / IFAC-PapersOnLine 48-7 (2015) 023–028

2. RUNNING EXAMPLE

The I-SafE features described in this paper are illustrated
using a simplified version of a fictitious electric motor drive
(E-Drive) system. More specifically, the logical model of the
system depicted in Fig. 1 is used. This simplified system is
composed of three sensors: Phase Current Sensor, Rotor
Angle Sensor, and Accelerator Pedal Sensor, a component
responsible for performing emergency shut-offs, a driver
controller, and a microcontroller that performs the central
management of the components.

Fig. 1. Logical model of the E-Drive system.

3. CREATION OF FAILURE MODELS

Using architecture component models such as the one
depicted in Fig. 1, I-SafE supports creating and associating
with architecture components failure models of the following
types: Component Fault Trees, Failure Modes and Effects
Analysis, and Markov Chains, which, in turn, will be
presented in this section.

3.1 Component Fault Trees

Component Fault Trees (CFT) extend standard fault trees
with the concept of modularity in order to facilitate the fault
tree analysis of large model-based systems. For the E-Drive
example, Fig. 2 depicts a CFT for the emergency shut-off
component. In a nutshell, it can be seen that the driver supply
commission failure mode can be caused by a faulty
emergency shutdown mechanism basic event, or by the
omission of the shut-off signal received from the
MicroController.

Fig. 2. CFT for the E-Drive’s emergency shut-off

3.2 Failure Modes and Effect Analysis

FMEA is a systematic safety analysis method that identifies
the possible system failure modes within a system and
evaluates the effects on the operation of the system if the
analyzed failure mode occurs. I-SafE allows creating
interface-focused IF-FMEA (Papadopoulos, et al., 2001) for
each system component. For instance, Fig. 3 depicts an
FMEA for the E-Drive's Pedal Sensor; depicted are the
failure mode value measured too high, its cause driver
acceleration measured too high, and effects, which are
undesired vehicle acceleration, and torque reference too
high.

Fig. 3. FMEA for the E-Drive's Pedal Sensor.

3.3 Markov Chains

In order to support the specification of probabilistic
relationships between different states of a component and
associated failure modes, I-SafE supports the creation of
Markov Chains. An example Markov Chain created with I-
SafE for the Angle Sensor component of the E-Drive system
is depicted in Fig. 4.

Fig 4. Angle Sensor failure model represented with a Markov
Chain.

DCDS 2015
May 27-29, 2015. Cancun, Mexico

24

	 Pablo Oliveira Antonino et al. / IFAC-PapersOnLine 48-7 (2015) 023–028	 25

2. RUNNING EXAMPLE

The I-SafE features described in this paper are illustrated
using a simplified version of a fictitious electric motor drive
(E-Drive) system. More specifically, the logical model of the
system depicted in Fig. 1 is used. This simplified system is
composed of three sensors: Phase Current Sensor, Rotor
Angle Sensor, and Accelerator Pedal Sensor, a component
responsible for performing emergency shut-offs, a driver
controller, and a microcontroller that performs the central
management of the components.

Fig. 1. Logical model of the E-Drive system.

3. CREATION OF FAILURE MODELS

Using architecture component models such as the one
depicted in Fig. 1, I-SafE supports creating and associating
with architecture components failure models of the following
types: Component Fault Trees, Failure Modes and Effects
Analysis, and Markov Chains, which, in turn, will be
presented in this section.

3.1 Component Fault Trees

Component Fault Trees (CFT) extend standard fault trees
with the concept of modularity in order to facilitate the fault
tree analysis of large model-based systems. For the E-Drive
example, Fig. 2 depicts a CFT for the emergency shut-off
component. In a nutshell, it can be seen that the driver supply
commission failure mode can be caused by a faulty
emergency shutdown mechanism basic event, or by the
omission of the shut-off signal received from the
MicroController.

Fig. 2. CFT for the E-Drive’s emergency shut-off

3.2 Failure Modes and Effect Analysis

FMEA is a systematic safety analysis method that identifies
the possible system failure modes within a system and
evaluates the effects on the operation of the system if the
analyzed failure mode occurs. I-SafE allows creating
interface-focused IF-FMEA (Papadopoulos, et al., 2001) for
each system component. For instance, Fig. 3 depicts an
FMEA for the E-Drive's Pedal Sensor; depicted are the
failure mode value measured too high, its cause driver
acceleration measured too high, and effects, which are
undesired vehicle acceleration, and torque reference too
high.

Fig. 3. FMEA for the E-Drive's Pedal Sensor.

3.3 Markov Chains

In order to support the specification of probabilistic
relationships between different states of a component and
associated failure modes, I-SafE supports the creation of
Markov Chains. An example Markov Chain created with I-
SafE for the Angle Sensor component of the E-Drive system
is depicted in Fig. 4.

Fig 4. Angle Sensor failure model represented with a Markov
Chain.

DCDS 2015
May 27-29, 2015. Cancun, Mexico

24

3.4 Structural Propagation Model

Once the modeling of the failure behavior of each component
is finished, I-SafE allows modeling the failure behavior of the
overall system with the help of the Structural Propagation
Model, which corresponds to the composition of the different
types of failure models of the components into one higher-
level diagram, as can be seen in Fig. 5. Thus, with I-SafE,
practitioners have the advantage of being able to choose the
best-suited technique for specifying the failure behavior of a
given component while still being able to work modularly.

Fig. 5. Heterogeneous failure models composing the failure.

4. PERFORMING SAFETY ANALYSES

This section introduces two analysis features supported by I-
SafE: minimal cut sets analysis and the calculation of the top-
event probability. Both types of analysis can generally be
performed with different computation tools. The current
version of I-SafE supports calculation methods developed at
Fraunhofer IESE as well as calculations provided by the tool
Fault Tree + 2, which offers support for a large set of
probability distributions.

4.1 Minimal Cut Sets Analysis

Minimal Cut Sets is an analysis technique developed for
Fault Tree Analysis in which the combinations of basic
events resulting in the occurrence of the top event are
identified. The focus of the analysis is on obtaining the
minimal combinations since these cut sets should be
considered with higher priority within the safety lifecycle.
Fig. 6 depicts the results for the undesired vehicle
acceleration failure mode.

2 http://www.isograph.com

4.2 Top-Event Probability Calculation

Determination of the top-event probability is one of the most
natural and obvious uses of a fault tree. The calculation can
be done straightforward based on the fault tree structure and
annotated probabilities (and probability distributions) of the
base events. As an example, Fig. 7 depicts the probability of
occurrence for the top-level event undesired vehicle
acceleration, which was computed for the E-Drive system.

Fig. 6. I-SafE's output for Minimal Cut Set Analysis.

Fig. 7. Quantitative analysis results.

5. TRACING SAFETY REQUIREMENTS SPECIFIED

WITH NATURAL LANGUAGE TO FAILURE MODELS
AND TO THE ARCHITECTURE

In order to conveniently support the creation of trace links, I-
SafE provides an autocomplete mechanism that suggests
elements that should be referenced in the safety requirement
being specified. These suggestions are made when the text
being written has similarities with the names of elements
present in the failure models or architecture models. For
instance, as shown in Fig. 8, as soon as the user starts to type
the text fragment “The M”, the suggestions of the architecture
component “MicroController” (cf. Fig. 1), along with other
elements that have similarities with this string, such as the
MicroController CFT (cf. Fig. 2), are shown in the
suggestion list.

One benefit of the autocomplete mechanism is that even if a
model–based approach is used to specify the safety
requirements, free text can still be used; moreover, the
writing flow of the specification does not need to be
interrupted to select elements of the architecture model to be
referenced in the safety requirement. With that, we also
support the seamless integration of safety requirements and
architectural design without the need to use strict formal

DCDS 2015
May 27-29, 2015. Cancun, Mexico

25

26	 Pablo Oliveira Antonino et al. / IFAC-PapersOnLine 48-7 (2015) 023–028

specification languages like Z, thus preserving intuitiveness
during the specification of safety requirements.

Another important aspect is the possibility to reference
multiple elements from heterogeneous models, such as
architecture and failure models, in one single specification.
With that, the safety requirement explicitly references the
reason for its existence and the elements that address its
demands.

Fig. 8. I-SafE autocomplete mechanism.

Last but not least, it is also possible to specify the Safety
Integrity Level (SIL) of the safety requirement being
specified. In the example shown in Fig. 8, the SIL
specialization for the road vehicle domain (Automotive
Safety Integrity Level (ASIL)) is used. Of course, I-SafE was
designed to support integrity levels of any domain, including
avionics and medical devices, where the terms Development
Assurance Levels (DAL) and Software Safety Classes are
used, respectively. One important aspect regarding integrity
levels is that consistency is assured between the integrity
level of the architectural elements and the associated safety
requirement.

6. I-SAFE VISUAL TRACE

I-SafE provides a visual trace mechanism that allows
engineers to visualize all elements related to each safety
requirement specification. It allows visualizing:

• Directly impacted engineering artifacts:
architectural elements explicitly referenced in
textual safety requirements specifications;

• Indirectly impacted engineering artifacts:
architectural elements that are not explicitly
mentioned in safety requirements specifications, but
that are related (over a series of indirections) to
those that are explicitly referenced. As an example
consider components that receive inputs from others
or deployment units that deploy a mix of directly
and indirectly impacted components;

• Failure models of directly and indirectly
impacted components: I-SafE allows visualizing
the failure models associated with architecture

elements created with the I-SafE features described
in Section 3;

• Other specifications related to safety
requirements being analyzed: for instance, there
may be guarantees or demands of a Conditional
Safety Certificates (ConSerts; Schneider & Trapp,
2013) of a given component that relate to the safety
requirement that is being analyzed. These would be
highlighted correspondingly.

The visual trace mechanism of I-SafE works as follows: the
user activates the Visual Trace mode and from this point on,
whenever he/she clicks on a safety requirement, the diagrams
that contain elements referenced by it will open and only the
referenced elements will be highlighted. In the example
shown in Fig. 11, the safety requirement is as follows: “The
MotorController shall provide the PWM timely and precisely.
It should use the RotorAngle value and the Pedal Sensor
value for its computation”. In this case, only the
MotorController element is referenced (cf. Fig. 1). After
activating the Visual Trace mode of I-SafE, whenever the
user clicks on the safety requirement element in the model
(cf. Fig. 9), the diagram shown in Fig. 1 opens and only the
referenced element MicroController is highlighted. It is
important to mention that the user can explicitly choose to
display directly and/or indirectly impacted engineering
artifacts. In this case, we chose to show only directly
impacted engineering artifacts.

Fig. 9. I-SafE mechanism for visualizing artifacts related to a
safety requirement.

7. AUTOMATED COMPLETENESS AND
CONSISTENCY CHECKS

I-SafE also provides support for executing completeness and
consistency checks between safety requirements and
architecture design, aiming at detecting and alerting
engineers to existing inconsistencies.

7.1 Completeness Checks

In I-SafE, we consider a safety requirement to be complete if
(i) its motivation is described in failure propagation models,

DCDS 2015
May 27-29, 2015. Cancun, Mexico

26

	 Pablo Oliveira Antonino et al. / IFAC-PapersOnLine 48-7 (2015) 023–028	 27

specification languages like Z, thus preserving intuitiveness
during the specification of safety requirements.

Another important aspect is the possibility to reference
multiple elements from heterogeneous models, such as
architecture and failure models, in one single specification.
With that, the safety requirement explicitly references the
reason for its existence and the elements that address its
demands.

Fig. 8. I-SafE autocomplete mechanism.

Last but not least, it is also possible to specify the Safety
Integrity Level (SIL) of the safety requirement being
specified. In the example shown in Fig. 8, the SIL
specialization for the road vehicle domain (Automotive
Safety Integrity Level (ASIL)) is used. Of course, I-SafE was
designed to support integrity levels of any domain, including
avionics and medical devices, where the terms Development
Assurance Levels (DAL) and Software Safety Classes are
used, respectively. One important aspect regarding integrity
levels is that consistency is assured between the integrity
level of the architectural elements and the associated safety
requirement.

6. I-SAFE VISUAL TRACE

I-SafE provides a visual trace mechanism that allows
engineers to visualize all elements related to each safety
requirement specification. It allows visualizing:

• Directly impacted engineering artifacts:
architectural elements explicitly referenced in
textual safety requirements specifications;

• Indirectly impacted engineering artifacts:
architectural elements that are not explicitly
mentioned in safety requirements specifications, but
that are related (over a series of indirections) to
those that are explicitly referenced. As an example
consider components that receive inputs from others
or deployment units that deploy a mix of directly
and indirectly impacted components;

• Failure models of directly and indirectly
impacted components: I-SafE allows visualizing
the failure models associated with architecture

elements created with the I-SafE features described
in Section 3;

• Other specifications related to safety
requirements being analyzed: for instance, there
may be guarantees or demands of a Conditional
Safety Certificates (ConSerts; Schneider & Trapp,
2013) of a given component that relate to the safety
requirement that is being analyzed. These would be
highlighted correspondingly.

The visual trace mechanism of I-SafE works as follows: the
user activates the Visual Trace mode and from this point on,
whenever he/she clicks on a safety requirement, the diagrams
that contain elements referenced by it will open and only the
referenced elements will be highlighted. In the example
shown in Fig. 11, the safety requirement is as follows: “The
MotorController shall provide the PWM timely and precisely.
It should use the RotorAngle value and the Pedal Sensor
value for its computation”. In this case, only the
MotorController element is referenced (cf. Fig. 1). After
activating the Visual Trace mode of I-SafE, whenever the
user clicks on the safety requirement element in the model
(cf. Fig. 9), the diagram shown in Fig. 1 opens and only the
referenced element MicroController is highlighted. It is
important to mention that the user can explicitly choose to
display directly and/or indirectly impacted engineering
artifacts. In this case, we chose to show only directly
impacted engineering artifacts.

Fig. 9. I-SafE mechanism for visualizing artifacts related to a
safety requirement.

7. AUTOMATED COMPLETENESS AND
CONSISTENCY CHECKS

I-SafE also provides support for executing completeness and
consistency checks between safety requirements and
architecture design, aiming at detecting and alerting
engineers to existing inconsistencies.

7.1 Completeness Checks

In I-SafE, we consider a safety requirement to be complete if
(i) its motivation is described in failure propagation models,

DCDS 2015
May 27-29, 2015. Cancun, Mexico

26

which, in turn, describe the potential failures of each
architectural element that might lead to a concrete hazard
occurrence and (ii) its content describes mitigation strategies
that are realized by performing modifications in the
architecture, such as rearrangement of existing elements and
connections and insertions of new ones. In this regard, I-
SafE’s checks whether:

• Every safety requirement describes mitigation
strategies for failures that are described in at least
one failure propagation model;

• Every failure propagation model describes the
failures of at least one safety-critical architecture
element; and

• Every safety requirement describes failure
mitigations referencing at least one safety-critical
architecture element.

The completeness checks are displayed to the user as shown
in Fig. 10, where the list of safety requirements is displayed,
along with their types and the completeness violation.

Fig. 10. I-SafE completeness checks outputs.

7.2 Consistency Checks

Consistency is a quality attribute that is ensured when there
are no contradictions among development artifacts (Zowghi
& Gervasi, 2004) (Glinz & Wieringa, 2013). In the scope of
this work, we understand consistency to be preserved as long
as there are no contradictions among safety requirements,
safety-critical architecture elements, and failure propagation
models. We understand that these contradictions are triggered
by updates or deletions of elements that are already traced. In
this regard, I-SafE consistency checks detects:

• For every updated or deleted safety requirement, the
safety-critical architecture elements, failure
propagation models, and other safety requirements
that are impacted;

• For every updated, deleted, or substituted safety-

critical architecture element, the safety
requirements, failure propagation models, and other
safety-critical architecture elements that are
impacted;

• For every updated or deleted failure propagation

model, the safety requirements and safety-critical
architecture elements that are impacted.

For instance, consider the MicroCrontroller, which is already
referenced by safety requirements, such as the one depicted
in Fig. 1. If, for example, a new port is added to this
component, the execution of the I-SafE consistency check
will display the safety requirements elements that reference
this component (cf. Fig. 11), which, in turn, must be analyzed
by the engineers because, due to a change in the referenced
component, they might have become invalid.

Fig. 11. Consistency check result after modifying
MicroController.

Another type of consistency check performed by I-SafE
regards possible SIL violations, which are caused when
safety requirements and the safety-critical architecture
elements that address them have incompatible safety integrity
levels. In this regard, I-SafE also checks whether the safety
requirements are addressed by safety-critical architecture
elements with an equal or more stringent safety integrity
level. For instance, Fig. 12 shows a list of architecture
elements that have ASIL incompatibility.

Fig. 12. ASIL violations detected by I-SafE.

8. RELATED WORK

I-SafE provides functionalities that support safety analysis
and creation as well as verification of traceability among
failure models, safety requirements, and the architecture.

DCDS 2015
May 27-29, 2015. Cancun, Mexico

27

28	 Pablo Oliveira Antonino et al. / IFAC-PapersOnLine 48-7 (2015) 023–028

Most of the tools on the market offer several techniques for
performing safety analysis. However, they mostly have
implemented traditional monolithic approaches, which do not
work well anymore with today’s complex systems. In this
sense, I-SafE offers a modular and compositional alternative
to this problem. Furthermore, through the tight integration
with the architecture, it creates the basis for better traceability
and reusability.

With respect to traceability features, PREEvision3 and
Medini Analyze4 are tools that also offer such support.
However, with respect to allocation, none of them offers
automated decision support to create dynamic traces within
textual safety requirements specifications, which, as we have
observed, improves not only the completeness and
consistency of safety requirements, but also the efficiency of
the specification process since the engineers do not have to
interrupt the flow of their specification writing to create the
traces.

Regarding the visual trace, we have observed that the
intuitive navigation mechanism of I-SafE, which displays
only diagrams that contain the elements referenced by the
safety requirements, is a considerable step towards
improvements in terms of efficiency of safety analysis
activities. In this regard, neither PREEvision nor Medini or
any other tool on the market provides such facilities.

In terms of completeness and consistency checks, there is no
other tool that supports automatic detection of orphan
elements in the safety architecture or automatic detection of
updates in architectural elements already referenced by safety
requirements. With respect to ASIL consistency checks,
Medini offers some support in this regard; the advantage of I-
SafE is that ASIL violations are identified directly when a
safety requirement is allocated.

9. CONCLUSION

Even though I-SafE is a non-commercial tool from academia,
it provides a range of features that can rarely be found in
professional tools. Amongst the features of I-SafE presented
throughout this paper, we deem the aspects of integration and
traceability particularly important. Integration between
different (types of) modular analysis models in the context of
a larger system and traceability between safety requirements
and related artifacts along the safety engineering chains are
features that are bound to make life much easier for
engineers. Of course, as an academic tool, the maturity of I-
SafE is not on par with professional tools – but this is
obviously also not the goal. With I-SafE we hope to
demonstrate the feasibility and effectiveness of these
concepts so that they will be recognized and maybe
eventually be adopted by the state of the practice.

ACKNOWLEDGEMENT

3 www.vector.com/preevision
4 www.ikv.de/medinianalyze

This work is supported by the Fraunhofer Innovation Cluster
Digitale Nutzfahrzeugtechnologie. We would also like to
thank Sonnhild Namingha for proofreading.

REFERENCES

Adler, R., 2013. Introducing Quality Attributes for a Safety
Concept. Detroit, Michigan, USA, s.n.
Antonino, P. O. & Trapp, M., 2014. Improving Consistency
Checks between Safety Concepts and View Based.
Architecture Design. Honolulu, Hawaii, USA, s.n.
Birch, J. et al., 2013. Safety Cases and Their Role in ISO
26262 Functional Safety Assessment. Toulouse, France,
Springer.
Domis, D. & Trapp, M., 2009. Component-Based Abstraction
in Fault Tree Analysis. Hamburg, Germany, Springer-Verlag,
pp. 297-310.
Easterbrook, S. & Nuseibeh, B., 1995. Managing
inconsistencies in an evolving specification. s.l., s.n., pp. 44-
55.
Glinz, M. & Wieringa, R., 2013. RE@21 spotlight: Most
influential papers from the requirements engineering
conference. Rio de Janeiro, Brazil, s.n., pp. 368 -370.
Hatcliff, J. et al., 2014. Certifiably safe software-dependent
systems: challenges and directions. Hyderabad, India, s.n.,
pp. 182-200.
International Organization for Standardization, 1998. IEC
61508 - Functional safety of
electrical/electronic/programmable electronic safety-related
systems, Geneva, Switzerland: The International
Electrotechnical Commission.
Leveson, N. G., 2000. Completeness in formal specification
language design for processcontrol systems. Portland,
Oregon, s.n.
Object Management Group, 2008. UML profile for modeling
QoS and FT characteristics and mechanisms. [Online].
Papadopoulos, Y., McDermid, J., Sasse, R. & Heiner, G.,
2001. Analysis and synthesis of the behaviour of complex
programmable electronic systems in conditions of failure.
Reliability Engineering & System Safety, 71(3), pp. 229-247.
Ramamoorthy, C., Ho, G. & Han, Y., 1977. Fault tree
analysis of computer system. New York, NY, USA, ACM,
pp. 13-17.
Reifer, D., 1979. Software Failure Modes and Effects
Analysis. IEEE Transactions on Reliability, R-28(3), pp.
247-249.
Schneider, D. & Trapp, M., 2013. Conditional Safety
Certification of Open Adaptive Systems. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 8(2), pp. 1-20.
Stadler, J. J. & Seidl, N. J., 2013. Software failure modes and
effects analysis. s.l., s.n., pp. 1-5.
Yu, Y., 2006. The Quantitative Safety Assessment for Safety-
Critical Computer Systems. Charlottesville, VA, USA.: Ph.D.
Dissertation. University of Virginia.
Zowghi, D. & Gervasi, V., 2002. The Three Cs of
Requirements: Consistency, Completeness, and Correctness.
Essen, Germany, s.n., pp. 55-164.
Zowghi, D. & Gervasi, V., 2004. On the Interplay between
Consistency, Completeness, and Correctness in Requirements
Evolution. Journal of Information and Software Technology,
46(11), pp. 763-779.

DCDS 2015
May 27-29, 2015. Cancun, Mexico

28

