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Abstract: Traditionally, safety engineering has been a matter of tables and textual documents and even of 
pen and paper. Even in the age of computerization, this did has not really changed significantly, as the 
state of the practice in safety engineering is nowadays dominated by Excel sheets and Word files. 
Nevertheless, a range of computer-aided safety analysis and modeling techniques have emerged and are 
being put to good use. The problem here is, however, that there is a lack of profound integration between 
different safety artifacts on the one hand and the general engineering artifacts on the other hand. In 
addition, between the different safety analysis techniques and the regular engineering techniques, there is 
usually a range of different tools in use that are not really compatible with each other. To overcome this 
problem, we conceptualized and implemented an integrated multi-analyses and multi-viewpoint safety 
engineering tool that enables tight integration between different models within and across different 
engineering disciplines. This paper gives an overview of the main features of this tool. 

Keywords: Safety analysis, safety requirements, architecture, failure model, traceability. 

 

1. INTRODUCTION 

Safety engineering artifacts have been defined by means of 
natural text in documents, spreadsheets, or databases. 
Sometimes, graphical notations like the Goal Structuring 
Notation (GSN) (Birch, et al., 2013) and UML (Object 
Management Group, 2008) are used to provide a more 
structured overview. Nevertheless, the lack of an underlying 
formalism of these approaches is a key factor that leads to 
their incompleteness and inconsistency. For instance, it is still 
challenging to ensure consistency between artifacts such as 
safety requirements, failure models, architecture 
specifications, source code, and test cases. The consequences 
of this incompleteness and inconsistency become more 
evident when the system has to be maintained because of, for 
instance, requirements changes, or system element reuse or 
modification (Adler, 2013). 

One major aspect of this challenge is inconsistency between 
safety requirements, failure models, and architecture 
(Antonino & Trapp, 2014). As these are usually created by 
different teams and in different moments and environments 
of the system development, they are very often completely 
disassociated. However, the safety requirements often result 
from a safety analysis of the architecture, and, lately, must be 
allocated to elements of the architecture (International 
Organization for Standardization, 2011). In this regard, the 
existing inconsistencies and incompleteness result in 
intensive efforts to update the artifacts impacted by the 
changes, and, consequently, significantly decrease the 
efficiency of the safety assurance architecture (Hatcliff, et al., 
2014). 

To contribute to overcoming this challenge, in this paper we 
introduce I-SafE: Integrated Safety Engineering, which is an 

Enterprise Architect1 extension for supporting safety analysis 
and the establishment of traceability among safety 
requirements, failure models, and architecture specification.  

With respect to the safety analysis features, I-SafE supports 
(i) the creation of failure models of the types Component 
Fault Trees (Domis & Trapp, 2009), Failure Mode and Effect 
Analysis (Stadler & Seidl, 2013), and Markov Chains 
(Grinstead & Snell, 2006), which are tightly integrated with 
elements of the architecture specification, and (ii) the 
automated execution of safety analyses based on minimal cut 
sets and top-event probability calculations. 

With respect to the traceability establishment, it offers (i) 
decision support for specifying safety requirements with 
natural language that are traceable to failure models and to 
the architecture, (ii) visualization mechanisms for identifying 
failure models and architecture elements impacted by safety 
requirements, and (iii) a set of automatic consistency and 
completeness checks that, among other things, detect 
inconsistencies in Safety Integrity Levels (SIL)  
(International Organization for Standardization, 2011). 

The remainder of this paper is organized as follows: Section 
2 briefly presents a running example. Section 3 presents how 
I-SafE supports the creation of failure models. Section 4 
subsequently describes how safety analyses based on these 
models can be performed. Section 5 introduces an I-SafE 
feature enabling the creation of natural language safety 
requirements that are linked to elements of the architecture 
and of failure models. Section 6 presents the I-SafE Visual 
Trace feature and Section 7 the completeness and consistency 
checks. Section 8 provides a brief overview of related work 
and Section 9 concludes the paper. 

1 http://www.sparxsystems.com 
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2. RUNNING EXAMPLE 

The I-SafE features described in this paper are illustrated 
using a simplified version of a fictitious electric motor drive 
(E-Drive) system. More specifically, the logical model of the 
system depicted in Fig. 1 is used. This simplified system is 
composed of three sensors: Phase Current Sensor, Rotor 
Angle Sensor, and Accelerator Pedal Sensor, a component 
responsible for performing emergency shut-offs, a driver 
controller, and a microcontroller that performs the central 
management of the components. 

 

Fig. 1. Logical model of the E-Drive system. 

3. CREATION OF FAILURE MODELS 

Using architecture component models such as the one 
depicted in Fig. 1, I-SafE supports creating and associating 
with architecture components failure models of the following 
types: Component Fault Trees, Failure Modes and Effects 
Analysis, and Markov Chains, which, in turn, will be 
presented in this section. 

3.1 Component Fault Trees 

Component Fault Trees (CFT) extend standard fault trees 
with the concept of modularity in order to facilitate the fault 
tree analysis of large model-based systems. For the E-Drive 
example, Fig. 2 depicts a CFT for the emergency shut-off 
component. In a nutshell, it can be seen that the driver supply 
commission failure mode can be caused by a faulty 
emergency shutdown mechanism basic event, or by the 
omission of the shut-off signal received from the 
MicroController. 

 

Fig. 2. CFT for the E-Drive’s emergency shut-off  

3.2 Failure Modes and Effect Analysis 

FMEA is a systematic safety analysis method that identifies 
the possible system failure modes within a system and 
evaluates the effects on the operation of the system if the 
analyzed failure mode occurs. I-SafE allows creating 
interface-focused IF-FMEA (Papadopoulos, et al., 2001) for 
each system component. For instance, Fig. 3 depicts an 
FMEA for the E-Drive's Pedal Sensor; depicted are the 
failure mode value measured too high, its cause driver 
acceleration measured too high, and effects, which are 
undesired vehicle acceleration, and torque reference too 
high. 
 

 
Fig. 3. FMEA for the E-Drive's Pedal Sensor. 

3.3 Markov Chains 

In order to support the specification of probabilistic 
relationships between different states of a component and 
associated failure modes, I-SafE supports the creation of 
Markov Chains. An example Markov Chain created with I-
SafE for the Angle Sensor component of the E-Drive system 
is depicted in Fig. 4. 
 

 
Fig 4. Angle Sensor failure model represented with a Markov 
Chain. 
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3.4 Structural Propagation Model 

Once the modeling of the failure behavior of each component 
is finished, I-SafE allows modeling the failure behavior of the 
overall system with the help of the Structural Propagation 
Model, which corresponds to the composition of the different 
types of failure models of the components into one higher-
level diagram, as can be seen in Fig. 5. Thus, with I-SafE, 
practitioners have the advantage of being able to choose the 
best-suited technique for specifying the failure behavior of a 
given component while still being able to work modularly. 
 

 
Fig. 5. Heterogeneous failure models composing the failure. 

 
4. PERFORMING SAFETY ANALYSES 

This section introduces two analysis features supported by I-
SafE: minimal cut sets analysis and the calculation of the top-
event probability. Both types of analysis can generally be 
performed with different computation tools. The current 
version of I-SafE supports calculation methods developed at 
Fraunhofer IESE as well as calculations provided by the tool 
Fault Tree + 2, which offers support for a large set of 
probability distributions. 

4.1 Minimal Cut Sets Analysis 

Minimal Cut Sets is an analysis technique developed for 
Fault Tree Analysis in which the combinations of basic 
events resulting in the occurrence of the top event are 
identified. The focus of the analysis is on obtaining the 
minimal combinations since these cut sets should be 
considered with higher priority within the safety lifecycle. 
Fig. 6 depicts the results for the undesired vehicle 
acceleration failure mode. 

2 http://www.isograph.com 

4.2 Top-Event Probability Calculation 

Determination of the top-event probability is one of the most 
natural and obvious uses of a fault tree. The calculation can 
be done straightforward based on the fault tree structure and 
annotated probabilities (and probability distributions) of the 
base events. As an example, Fig. 7 depicts the probability of 
occurrence for the top-level event undesired vehicle 
acceleration, which was computed for the E-Drive system. 
 

 

Fig. 6. I-SafE's output for Minimal Cut Set Analysis. 

 

 
Fig. 7. Quantitative analysis results. 

 
5. TRACING SAFETY REQUIREMENTS SPECIFIED 

WITH NATURAL LANGUAGE TO FAILURE MODELS 
AND TO THE ARCHITECTURE 

In order to conveniently support the creation of trace links, I-
SafE provides an autocomplete mechanism that suggests 
elements that should be referenced in the safety requirement 
being specified. These suggestions are made when the text 
being written has similarities with the names of elements 
present in the failure models or architecture models. For 
instance, as shown in Fig. 8, as soon as the user starts to type 
the text fragment “The M”, the suggestions of the architecture 
component “MicroController” (cf. Fig. 1), along with other 
elements that have similarities with this string, such as the 
MicroController CFT (cf. Fig. 2), are shown in the 
suggestion list. 
 
One benefit of the autocomplete mechanism is that even if a 
model–based approach is used to specify the safety 
requirements, free text can still be used; moreover, the 
writing flow of the specification does not need to be 
interrupted to select elements of the architecture model to be 
referenced in the safety requirement. With that, we also 
support the seamless integration of safety requirements and 
architectural design without the need to use strict formal 
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specification languages like Z, thus preserving intuitiveness 
during the specification of safety requirements.  
 
Another important aspect is the possibility to reference 
multiple elements from heterogeneous models, such as 
architecture and failure models, in one single specification. 
With that, the safety requirement explicitly references the 
reason for its existence and the elements that address its 
demands. 
 

 
Fig. 8. I-SafE autocomplete mechanism. 

Last but not least, it is also possible to specify the Safety 
Integrity Level (SIL) of the safety requirement being 
specified. In the example shown in Fig. 8, the SIL 
specialization for the road vehicle domain (Automotive 
Safety Integrity Level (ASIL)) is used. Of course, I-SafE was 
designed to support integrity levels of any domain, including 
avionics and medical devices, where the terms Development 
Assurance Levels (DAL) and Software Safety Classes are 
used, respectively. One important aspect regarding integrity 
levels is that consistency is assured between the integrity 
level of the architectural elements and the associated safety 
requirement. 
 

6. I-SAFE VISUAL TRACE 

I-SafE provides a visual trace mechanism that allows 
engineers to visualize all elements related to each safety 
requirement specification. It allows visualizing: 

• Directly impacted engineering artifacts: 
architectural elements explicitly referenced in 
textual safety requirements specifications;  

• Indirectly impacted engineering artifacts: 
architectural elements that are not explicitly 
mentioned in safety requirements specifications, but 
that are related (over a series of indirections) to 
those that are explicitly referenced. As an example 
consider components that receive inputs from others 
or deployment units that deploy a mix of directly 
and indirectly impacted components;  

• Failure models of directly and indirectly 
impacted components: I-SafE allows visualizing 
the failure models associated with architecture 

elements created with the I-SafE features described 
in Section 3; 

• Other specifications related to safety 
requirements being analyzed: for instance, there 
may be guarantees or demands of a Conditional 
Safety Certificates (ConSerts; Schneider & Trapp, 
2013) of a given component that relate to the safety 
requirement that is being analyzed. These would be 
highlighted correspondingly. 

 
The visual trace mechanism of I-SafE works as follows: the 
user activates the Visual Trace mode and from this point on, 
whenever he/she clicks on a safety requirement, the diagrams 
that contain elements referenced by it will open and only the 
referenced elements will be highlighted. In the example 
shown in Fig. 11, the safety requirement is as follows: “The 
MotorController shall provide the PWM timely and precisely. 
It should use the RotorAngle value and the Pedal Sensor 
value for its computation”. In this case, only the 
MotorController element is referenced (cf. Fig. 1). After 
activating the Visual Trace mode of I-SafE, whenever the 
user clicks on the safety requirement element in the model 
(cf. Fig. 9), the diagram shown in Fig. 1 opens and only the 
referenced element MicroController is highlighted. It is 
important to mention that the user can explicitly choose to 
display directly and/or indirectly impacted engineering 
artifacts. In this case, we chose to show only directly 
impacted engineering artifacts. 
 

 
Fig. 9. I-SafE mechanism for visualizing artifacts related to a 
safety requirement. 
 

7. AUTOMATED COMPLETENESS AND 
CONSISTENCY CHECKS 

I-SafE also provides support for executing completeness and 
consistency checks between safety requirements and 
architecture design, aiming at detecting and alerting 
engineers to existing inconsistencies. 

7.1 Completeness Checks 

In I-SafE, we consider a safety requirement to be complete if 
(i) its motivation is described in failure propagation models, 
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which, in turn, describe the potential failures of each 
architectural element that might lead to a concrete hazard 
occurrence and (ii) its content describes mitigation strategies 
that are realized by performing modifications in the 
architecture, such as rearrangement of existing elements and 
connections and insertions of new ones. In this regard, I-
SafE’s checks whether: 

• Every safety requirement describes mitigation 
strategies for failures that are described in at least 
one failure propagation model; 

• Every failure propagation model describes the 
failures of at least one safety-critical architecture 
element; and  

• Every safety requirement describes failure 
mitigations referencing at least one safety-critical 
architecture element. 

 
The completeness checks are displayed to the user as shown 
in Fig. 10, where the list of safety requirements is displayed, 
along with their types and the completeness violation. 
 

 
Fig. 10. I-SafE completeness checks outputs. 

7.2 Consistency Checks 

Consistency is a quality attribute that is ensured when there 
are no contradictions among development artifacts (Zowghi 
& Gervasi, 2004) (Glinz & Wieringa, 2013). In the scope of 
this work, we understand consistency to be preserved as long 
as there are no contradictions among safety requirements, 
safety-critical architecture elements, and failure propagation 
models. We understand that these contradictions are triggered 
by updates or deletions of elements that are already traced. In 
this regard, I-SafE consistency checks detects: 
 

• For every updated or deleted safety requirement, the 
safety-critical architecture elements, failure 
propagation models, and other safety requirements 
that are impacted; 

 
• For every updated, deleted, or substituted safety-

critical architecture element, the safety 
requirements, failure propagation models, and other 
safety-critical architecture elements that are 
impacted; 

 
• For every updated or deleted failure propagation 

model, the safety requirements and safety-critical 
architecture elements that are impacted. 

 
For instance, consider the MicroCrontroller, which is already 
referenced by safety requirements, such as the one depicted 
in Fig. 1. If, for example, a new port is added to this 
component, the execution of the I-SafE consistency check 
will display the safety requirements elements that reference 
this component (cf. Fig. 11), which, in turn, must be analyzed 
by the engineers because, due to a change in the referenced 
component, they might have become invalid. 
 

 
Fig. 11. Consistency check result after modifying 
MicroController. 

Another type of consistency check performed by I-SafE 
regards possible SIL violations, which are caused when 
safety requirements and the safety-critical architecture 
elements that address them have incompatible safety integrity 
levels. In this regard, I-SafE also checks whether the safety 
requirements are addressed by safety-critical architecture 
elements with an equal or more stringent safety integrity 
level. For instance, Fig. 12 shows a list of architecture 
elements that have ASIL incompatibility. 
 

 
Fig. 12. ASIL violations detected by I-SafE. 

 
8. RELATED WORK 

I-SafE provides functionalities that support safety analysis 
and creation as well as verification of traceability among 
failure models, safety requirements, and the architecture.  
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Most of the tools on the market offer several techniques for 
performing safety analysis. However, they mostly have 
implemented traditional monolithic approaches, which do not 
work well anymore with today’s complex systems. In this 
sense, I-SafE offers a modular and compositional alternative 
to this problem. Furthermore, through the tight integration 
with the architecture, it creates the basis for better traceability 
and reusability.  
 
With respect to traceability features, PREEvision3 and 
Medini Analyze4 are tools that also offer such support. 
However, with respect to allocation, none of them offers 
automated decision support to create dynamic traces within 
textual safety requirements specifications, which, as we have 
observed, improves not only the completeness and 
consistency of safety requirements, but also the efficiency of 
the specification process since the engineers do not have to 
interrupt the flow of their specification writing to create the 
traces.  
 
Regarding the visual trace, we have observed that the 
intuitive navigation mechanism of I-SafE, which displays 
only diagrams that contain the elements referenced by the 
safety requirements, is a considerable step towards 
improvements in terms of efficiency of safety analysis 
activities. In this regard, neither PREEvision nor Medini or 
any other tool on the market provides such facilities.  
 
In terms of completeness and consistency checks, there is no 
other tool that supports automatic detection of orphan 
elements in the safety architecture or automatic detection of 
updates in architectural elements already referenced by safety 
requirements. With respect to ASIL consistency checks, 
Medini offers some support in this regard; the advantage of I-
SafE is that ASIL violations are identified directly when a 
safety requirement is allocated. 
 

9. CONCLUSION 

Even though I-SafE is a non-commercial tool from academia, 
it provides a range of features that can rarely be found in 
professional tools. Amongst the features of I-SafE presented 
throughout this paper, we deem the aspects of integration and 
traceability particularly important. Integration between 
different (types of) modular analysis models in the context of 
a larger system and traceability between safety requirements 
and related artifacts along the safety engineering chains are 
features that are bound to make life much easier for 
engineers. Of course, as an academic tool, the maturity of I-
SafE is not on par with professional tools – but this is 
obviously also not the goal. With I-SafE we hope to 
demonstrate the feasibility and effectiveness of these 
concepts so that they will be recognized and maybe 
eventually be adopted by the state of the practice. 
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