

Bachelorarbeit

Konzeption und Entwicklung
eines Werkzeugs zur

Spezifikation und Analyse
von Safety-Modellen auf Basis

von Enterprise Architect

Jan Reich

Datum: 10/2013

Fachbereich Informatik, Technische Universität Kaiserslautern
Fraunhofer Institut für experimentelles Software Engineering Kaiserslautern

Konzeption und Entwicklung
eines Werkzeugs zur

Spezifikation und Analyse
von Safety-Modellen auf Basis

von Enterprise Architect

Bachelorarbeit

von

Jan Reich

31.10.2013

Erstprüfer: Prof. Dr.-Ing. habil. Peter Liggesmeyer,

 AG Software Engineering: Dependability

Zweitprüfer: Dr.-Ing. Mario Trapp,

 Fraunhofer IESE

Betreuer: M. Sc. David Santiago Velasco Moncada,

 Fraunhofer IESE

Erklärung

Hiermit erkläre ich, Jan Reich, dass ich die vorliegende Bachelorarbeit mit
dem Thema

„Konzeption und Entwicklung eines Werkzeugs zur
Spezifikation und Analyse von Safety-Modellen auf Basis

von Enterprise Architect“

selbständig verfasst und keine anderen als die angegebenen Hilfsmittel ver-
wendet habe. Die Stellen, die anderen Werken dem Wortlaut oder dem Sinn
nach entnommen wurden, habe ich durch die Angabe der Quelle, auch der
benutzten Sekundärliteratur, als Entlehnung kenntlich gemacht.

...

Jan Reich,

Kaiserslautern, den 31.10.2013

Kurzfassung

Im Kontext des Projektes Software Platform for Embedded Systems 2020
(SPES2020) wurde die konzeptionelle Grundlage dafür geschaffen, die Er-
stellung und Analyse von Safety-Modellen in den Prozess des System De-
signs für sicherheits-kritische und software-intensive eingebettete Systeme
zu integrieren. Außerdem wurde ein generisches Austausch-Format für Sa-
fety-Modelle entworfen, das den Modell-Austausch zwischen verschiedenen
Modellierungs- und Analyse-Werkzeugen ermöglicht. Um die erforschten
Konzepte für die Praxis attraktiv zu machen, müssen diese allerdings in die
industriell benutzten Werkzeuge integriert werden. Diese Arbeit beschäftigt
sich mit der Entwicklung eines Prototyps für das Modellierungs-Werkzeug
Enterprise Architect (EA), der die Erstellung und Analyse von Safety-
Modellen innerhalb dieses Werkzeugs ermöglicht. Die konkret implementier-
te Analyse-Methode ist die Fehlerbaum-Analyse mit komponenten-
integrierten Fehlerbäumen (C²FT). Es wird gezeigt, dass in EA modellierte
C²FTs in das generische Safety Austausch-Format überführt und anschlie-
ßend mit den Fehlerbaum-Analyse-Werkzeugen des Fraunhofer IESE und
der kommerziellen Software Isograph FaultTree+ analysiert werden können.
Der Hauptteil der Arbeit besteht aus der Entwickler-Dokumentation der ein-
geführten Schichten-Architektur und deren konkreten Implementierung für
EA. Zusätzlich wird das bestehende C²FT-Meta-Modell evaluiert und im ge-
nerischen Safety-Austausch-Format dahingehend erweitert, dass zukünftig
sowohl weitere Safety-Analyse-Techniken wie z.B. Failure Mode and Effect
Analysis (FMEA) in das Format integriert werden können als auch eine Sa-
fety-Analyse durchgeführt werden kann, die unabhängig von den verwende-
ten Analyse-Techniken ist.

Abstract

In the context of the project Software Platform for Embedded Systems 2020
(SPES2020) the conceptual foundations have been researched that allow to
integrate the creation and analysis of safety models into the system design
process for safety-critical and software-intensive embedded systems. Fur-
thermore, a generic safety exchange format has been developed that ena-
bles the exchange of safety models between different modeling and analysis
tools. In order to make the researched approach applicable in practice, it has
to be integrated into those tools that are commonly used in the industry. This
thesis deals with the development of a prototype for the modeling tool Enter-
prise Architect (EA) that is able to create and analyze safety models within
this tool. The considered analysis technique is the fault tree analysis with
component-integrated fault trees (C²FT). It’s demonstrated that C²FT models
that are created in EA can be transformed into the generic safety exchange
format and subsequently analyzed with the fault tree analysis tools of the
Fraunhofer IESE and the commercial software FaultTree+ by Isograph
Company. The greater part of this thesis consists of the documentation for
developers including the introduced layered architecture as well as its im-
plementation for EA. In addition, the existing C²FT meta-model is evaluated
and the generic safety exchange format is extended in a way that on the one
hand, further safety analysis techniques like Failure Mode and Effect Analy-
sis (FMEA) can be easier integrated into the format and on the other hand,
safety analysis can be performed for safety models that incorporate different
analysis techniques at the same time.

Table of Contents

1 Introduction 1

2 Theoretical Foundations 5
2.1 Architectural Design 5
2.2 Fault Tree Analysis 7
2.2.1 Technique Description 7
2.2.2 Fault Tree Model Evolution 8

3 Layered System Architecture 9
3.1 Primary Requirements 9
3.2 Big Picture 10
3.3 Front End Layer 12
3.3.1 Front End Layer Requirements 12
3.3.2 Functional Decomposition 13
3.3.3 Layer Interface and Interaction Structure 16
3.4 Model Transformation Layer 18
3.4.1 Model Transformation Layer Requirements 18
3.4.2 Functional Decomposition 18
3.4.3 Layer Interface and Interaction Structure 21
3.5 Analysis Back End Integration Challenges 23

4 System Documentation 25
4.1 Model Transformation Layer 25
4.1.1 Safety Development Model 25
4.1.2 MTL Design Documentation 31
4.2 Enterprise Architect Front End 37
4.2.1 UML Profiles in EA 38
4.2.2 EA C²FT Add-In 45
4.3 Back End Integration 53
4.4 Crosscutting Aspects 54

5 Evaluation 57
5.1 Prototype Evaluation 57
5.1.1 Component Model 57
5.1.2 C²FT Models 58
5.1.3 CFT Analysis 60
5.2 Conclusion 62
5.3 Possible Directions for Future Work 63

6 Appendix 65
6.1 EA Development Additional Materials 65

6.2 XML Serialization Example 70
6.2.1 CFT Test Model 70
6.2.2 Serialized CFT 70
6.2.3 Serialized Analysis Result 72

Literature 73

List of Figures 75

1

1 Introduction

According to [1], 98% of all produced microprocessors are installed in em-
bedded systems. These embedded systems are used in various application
areas and are omnipresent in our daily lives: the majority of automobiles and
airplanes are controlled by embedded systems. In the medical sector they
are used for example for the monitoring of vital functions or for carrying out
irradiation therapies. Furthermore, embedded technologies are extensively
used in devices for consumer electronics and the power supply industry.
This implies that special attention should be paid to the development of em-
bedded systems and their software.

Numerous examples demonstrate in its own right that embedded systems
are safety-critical in many respects and can have an impact on the life and
limb of people. Due to the steady increase in the complexity of such systems
new techniques need to be developed constantly that allow to master the
complexity, to deliver the required product quality, and to satisfy the safety
requirements simultaneously. There exist international standards like
IEC61508 [2] or ISO26262 [3] that propose techniques for anchoring safety
engineering tasks into the whole development process. This includes for ex-
ample the consistent realization of safety analyses throughout the develop-
ment process. The safety analysis proved difficult particularly for complex
system architectures; therefore, appropriate techniques need to be em-
ployed to keep the complexity as low as possible.

The research project Software Platform Embedded Systems 2020
(SPES2020) was started in 2009. One of the research tasks was to perform
research for the development of concepts for software-intensive embedded
systems applicable across industry domain boundaries. According to [4], the
main objective of this project was to master the steadily increasing complexi-
ty of these systems by providing an integrated concept ranging from re-
quirements down to the resulting program code, independent of the specific
domain. This includes the identification of similarities between embedded
systems from different domains, and a high capability for the automation of
process tasks in tools. The essential result of the project was that model-
based design (MBD) and component-based software engineering (CBSE)
are key components for overcoming the complexity challenge mentioned
above. Although MBD and CBSE are well suited for the reduction of system
development complexity, their principles were not considered in traditional
safety analysis techniques. In order to enable the seamless integration of the
established technique fault tree analysis with the SPES2020 concepts, tradi-
tional fault trees were extended to the concept of component integrated fault
trees (C²FT), which follow the principles of CBSE and introduce formal rela-

2

tions between design components and component fault trees (CFT) for the
first time.

The follow-up project SPES_XT uses the results of SPES2020 and address-
es some new requirements with respect to the integration of safety analysis
techniques. In first place different safety analysis techniques are needed on
arbitrary system hierarchy levels as well as combined in one failure model in
order to allow dependable and adequate statements about system safety. In
addition to that, a tool architecture should be developed that decouples the
safety models from the usage of specific frontend modeling and backend
analysis tools. The vision of SPES_XT is that specific failure models of dif-
ferent frontend modeling tools can be transferred into and from one safety
exchange format on which the backend analysis tools can operate on. This
allows the use of arbitrary front end modeling tools as well as a better opti-
mization of the analysis algorithms.

In the course of SPES_XT, the Fraunhofer IESE implemented such a tool
architecture, which currently supports the safety analysis of CFTs with the
algorithms of the commercial software FaultTree+ from Isograph Company
and incorporated an own implementation of analysis algorithms for CFTs.
The only supported front end modeling tool is MagicDraw (MD) from NoMag-
ic Company. The MagicDraw implementation was primarily developed as a
constantly evolving prototype in order to evaluate the results of SPES2020 in
practice.

Enterprise Architect (EA) from Sparx Systems Company is widely accepted
across the industry in architecture modeling of embedded systems and is
preferred by some customers over MagicDraw; EA should therefore be inte-
grated as a frontend modeling tool into the tool architecture of SPES_XT,
too.

The main focus of this thesis rests on the implementation of this new front
end to serve as a prototype for the integration of further front ends into the
tool architecture, thus an integral part of this thesis is to provide sufficient
documentation to satisfy the desired prototype character.

Before the integration of the EA front end could happen, the existing safety
exchange format’s meta-models, developed according to the results of
SPES2020, had to be evaluated on the basis of the experience made with
the available MagicDraw implementation. The source code of the IESE anal-
ysis back end, which had used the former meta-models, had also to be
changed accordingly.

After that, UML profiles have been created in EA, which represent the safety
exchange format’s failure meta-models on the front end side. In order to add
more complex functionality and enable the connection to analysis back ends,

3

an EA add-in has been developed on the .NET platform. Before that, con-
ceptional considerations had to be made on where the dividing line between
front end side and the safety exchange format implementation should reside.

The next step has been the transformation of the front end failure models in-
to the safety exchange format as well as the development of the connection
to the analysis back ends, so that analysis tasks were able to be invoked
from within the modeling front end tool. Eventually, UI dialogs inside the EA
add-in had to be implemented, which present the results of the supported
safety analysis operations to the user in a comprehensive and attractive
way.

In order to explain how the objectives of this thesis have been achieved, the
following structure has been chosen:

Section “Theoretical Foundations” gives an introduction on state-of-the-art
system design principles and describes the impact that these principles had
on the meta-models of fault tree analysis.

With this foundation, section “Layered System Architecture” gives an over-
view of the relevant requirements of SPES_ XT and describes the resulting
layered architecture consisting of front end layer and model transformation
layer. This includes the functional contents of the layers and their communi-
cation with one another. In addition, the challenges for the integration of
analysis back ends are discussed.
The documentation of the layer architecture’s implementation with the front
end EA is the content of the next section "System Documentation". Initially,
the failure meta-models and abstract concepts of the current version of the
safety exchange format implementation are presented. Then, the design of
the model transformation layer’s implementation is described. The second
part of this section is the description of how the front end EA has been inte-
grated. This includes the created UML profiles as well as the design of the
EA add-in. The section ends with crosscutting design aspects applicable for
both front end layer and model transformation layer and an overview which
back end tools and analysis operations have been integrated so far.

The last section of the thesis consists of the evaluation of the developed pro-
totype as well as some possible directions for future work. In addition, it con-
tains a conclusion that discusses how well the thesis’ goals have been
achieved.

4

5

2 Theoretical Foundations

This section gives an introduction to the theoretical foundations on which this
thesis is based. Section 2.1 depicts the state of the art in the architectural
design of software-intensive embedded systems. Then, section 2.2 introduc-
es fault tree analysis and explains how far integration into architectural sys-
tems has been accomplished.

2.1 Architectural Design

Due to the high complexity that is inherent to today’s embedded systems
and therefore also to their development, high efforts have to be invested in
order to master this complexity. On top of that, safety criticality adds an extra
level of complexity to the development, because several additional activities
need to be integrated in the whole development process to be able to satisfy
safety requirements. For large systems, the adherence to development
methods that apply proven principles helped to satisfy these requirements in
the past. These principles and methods for handling complexity are ex-
plained with more detail in the following.

• Modular Decomposition

Modular Decomposition is “the process of breaking a system into compo-
nents to facilitate design and development” [5].

This means that a divide and conquer approach is applied, which identifies
clearly defined units of the system. The interface of such a unit is represent-
ed by ports, which can be connected and thus define the relationships be-
tween units in a clear manner. Its advantage is that developers don’t need to
have an overall understanding of the system that should be developed, but
can concentrate only on that part of it, which is relevant for their specific de-
velopment task. This technique is also known as distributed development.
Ideally, when modular decomposition is applied correctly, the development
of a system’s components can in theory be happen completely in parallel.
However, this is achieved in practice often only to a certain degree.

• Integrated Views

A View is “a representation of a whole system, from the perspective of a re-
lated set of concerns” [5].

In particular in embedded systems several different views can be defined
according to this definition, e.g. functional or logical views. In addition, non-

6

functional properties like safety, which is considered in this thesis, can be
expressed as views. A system’s separation into views has the benefit that
different aspects of it can be treated separately. However, in most cases, el-
ements can be part of different views simultaneously, because the underly-
ing system is the same. In order to enhance traceability between views, they
have to be integrated with each other accordingly. Note that the given defini-
tion can also be applied for components instead of whole systems.

• Interface Abstraction

When modular decomposition is applied, components are refined into sub-
components which are themselves further refined into subcomponents and
so on. Thus, a hierarchy is created for the purpose of reducing complexity.
This complexity reduction is only achieved, when a limited amount of infor-
mation is needed to understand a specific component in the hierarchy, i.e.
when subcomponents should be used in this component, they have to be
modeled as black boxes omitting their concrete realization, which is not
needed to model the realization of the component itself. Instead, only the
subcomponents’ interfaces need to be exposed to understand the behavior
of the component. This approach is called interface abstraction and enables,
apart from complexity reduction, reuse, the easy exchange of a component’s
realization, when its interface stays unchanged, and the division of labor.

A typical example for the need of both modularization and interface abstrac-
tion can be seen in the industry, when a supplier company delivers a real-
ized component to the OEM Company for integration into the overall system.
The OEM doesn’t need to know all realization details for integrating the
component with other components, when a complete description of the inter-
face is available.

• Component-Based Software Engineering and Model-Based Design

The three explained principles for handling complexity are the foundation for
the development method Component-Based Software Engineering (CBSE)
(see [6] for a comprehensive characterization of the method) that is a com-
monly used method in state-of-the-art development of embedded systems in
general. Thus, it has also become the proposed development method in the
context of the SPES2020 project.

Apart from CBSE, the Model-Based Development (MBD) method in general
also adheres to the mentioned principles. According to [7], MBD focuses on
the minimization of redundancy during the development of software systems
by creating abstraction models that can express domain-specific problems in
a much clearer way than classical approaches are capable of. Usually, the
executable source code for the target platforms is generated from the mod-
els. In addition, the applied formalisms in MBD provide a very high potential

7

for automation. For example, changed requirements can be traced down au-
tomatically to the affected architectural elements, because there is a formal
relation between them.

The considered language in this thesis is the semi-formal Unified Modeling
Language (UML) that supports modular decomposition and partially the no-
tion of views by default. Interface abstraction and integrated views can be in-
tegrated into the UML by its extension mechanism, the so-called UML pro-
files, that will be of interest in this thesis and therefore covered in section
4.2.1 in more detail.

2.2 Fault Tree Analysis

This section introduces the safety analysis technique fault tree analysis
(FTA) and its relation to architectural component models.

2.2.1 Technique Description

FTA is a deductive failure analysis technique that is suggested by several
standards as part of functional safety assessment, e.g. the international
standard IEC 61508 [2]. Its aim is to perform a top-down search for causes
of a specific dangerous failure that can occur, typically depicted as the top
event in a model. The causes are modeled by so-called basic events and
represent atomic sources for failure. The idea is to relate these basic events
logically by using so-called gates that represent Boolean operators such as
AND, OR, NOT or XOR.

Two kinds of analysis could be performed in FTA, namely qualitative and
quantitative analysis.

The most used and best known qualitative analysis operation in FTA is the
minimal cut set computation, which provides minimal cut sets for coherent
fault trees (FT) or prime implicants for non-coherent fault trees. A fault tree is
coherent, if it doesn’t contain any NOT gate. Both minimal cut sets and prime
implicants are minimal combinations of basic events that cause the analyzed
top event to occur. This analysis type is typically used for the identification of
those basic event sets with the smallest number of events, because in the
extreme case, they represent a single point of failure in the system. Thus,
they have to be considered with priority in system design in order to build
safe and reliable systems.

Quantitative analysis can be performed, if probability distributions can be as-
signed to all basic events in a fault tree. In this case, the minimal cut sets
computed in the qualitative analysis can be additionally ordered after their
occurrence probability. Due to the fact that probabilities for basic events are
often not known exactly, e.g. when they represent software failures, it’s also

8

possible to choose random probability values from defined boundaries. In
this case, the analysis is called semi-quantitative.

2.2.2 Fault Tree Model Evolution

The fault tree theory has been considered in many industry domains since its
invention by Bell Telephone Laboratories for a rocket-launch control system
in 1961 [8]. Because of the fact that traditional fault tree theory had been a
well-researched area, it was also applied for software code analysis since
the 1980s [9].

As described in section 2.1, the complexity in embedded systems develop-
ment is successfully handled by the application of the development methods
CBSE and MBD. However, with traditional FTA, the principles inherent to
CBSE and MBD are not adhered to, so all their benefits are lost, because
the continuous model synchronization between component model and FT
model requires huge additional effort in this case. Thus, the principles need
to be applied for FT models as well.

An important improvement of traditional FTs addressed the problem that
their structure had been flat, i.e. they did not have a reduction of complexity
through modularization. This resulted in FT models that were hard to use to-
gether with their related component models. As a result, Component Fault
Trees (CFT) were introduced by [10], which were able to reflect a modular
structure in parallel to the basic structure of components. This was achieved
by the introduction of both input events, which represent transfer elements
that allow the division of a flat fault tree into modular sub trees, and special
components, which allow the representation of these subtrees.

“Component Fault Trees cannot be directly integrated with the generic Com-
ponent Model [...] because they do not support Interface Abstraction.” (p. 59,
[11]). Thus, the next improvement step was taken to Component Integrated
Fault Trees (C²FT), which were proposed in [11]. The C²FT model defines a
formal relation between the component model and the CFT model, so failure
modes of fault trees are formally mapped to their functional counterparts.
This ability allows for consistency checks and traceability between both
views. In addition, the components can be reused together with their CFTs
because of the formal relation.

9

3 Layered System Architecture

This section addresses the layered system architecture, which originates
from the requirements of the SPES_XT project. In section 3.1, the most im-
portant requirements are outlined. Section 3.2 presents the resulting archi-
tecture from a high level perspective describing the interface to the system’s
environment as well as a summary of the system contents. The following
sections 3.3 and 3.4 present structure, runtime behavior and interfaces of
each layer in more detail. At last, section 3.5 describes different appearance
types of back end tool APIs as well as typical problems occurring with their
integration.

3.1 Primary Requirements

Because of the fact that the SPES_XT project addresses requirements of
several different areas, those relevant for this thesis are described in the fol-
lowing.

The flexibility for tooling choices should be improved for stakeholders.

In the last decade, the application environment in the area of safety model-
ing and analysis for embedded systems has evolved to a variety of solutions
by different vendors. According to the consensus in the industries, these so-
lutions usually support several different analysis techniques, but in most
cases have their strength solely in one technique, which forces companies to
use tools from different vendors in order to get the best results. Most of the
available tools don’t support a common exchange format for failure models,
so the model exchange between different tools is aggravated.

A key objective of SPES_XT concerning safety development is the seamless
integration of safety analysis with system design. As a consequence, joining
pure architectural modeling tools and pure safety modeling and analysis
tools would reduce the dependability of stakeholders on specific tools signifi-
cantly. As a consequence, architectural modeling tools must be extended to
include the ability to create failure models and the exchange of failure mod-
els between different tools must be substantially simplified. The second task
is in its entirety beyond the scope of this thesis, but the developed prototype
paved the way for coping with this task in the future.

The consideration of those findings allows the flexibility to choose the best
tool set in a specific context; for example, OEM integrators and suppliers in
the automotive industry usually use different tool sets for the same analysis

10

technique, but the missing exchange format inhibits this degree of freedom,
when much manual rework should be avoided.

It should be possible to combine heterogeneous safety analysis techniques
within one failure model.

Because of the fact that the complexity as well as the required safety level of
the developed systems and the components have grown, traditional safety
analysis techniques like FTA have reached their limits. Thus, the necessity
arose to research modular variants for analysis techniques like Markov anal-
ysis to be applicable within the SPES Modeling Approach. Every technique
has its own separated failure meta-model, so it has not been possible by
now to model the components of a system with different failure models and
to perform safety analysis for the overall system then. Hence, a new ap-
proach needs to be introduced, which abstracts from specific analysis tech-
niques and is able to be used for overall safety analysis.

From an industrial point of view, the expertise in the application of specific
analysis techniques also plays an important role, because a company having
the choice between different techniques with comparable results will obvi-
ously choose the variant that requires less time.

Apart from the available expertise, the system’s required safety integrity level
dictates the process of safety development including the mandatory safety
analysis techniques, which can be more than one, dependent on the level,
i.e. it’s likely that several techniques must be applied simultaneously. An ex-
ample for such a standard is ISO26262 [3], which covers safety aspects in
the automotive industry and includes four (automotive) safety integrity levels
(ASIL) with different analysis technique recommendations per level.

3.2 Big Picture

The proposed architecture for fulfilling the requirements stated in the preced-
ing section introduces two intermediate layers between architectural model-
ing tools and safety modeling and analysis tools as shown in Figure 1.

The architectural solution’s context consists of three parts, namely the mod-
eling front ends, the safety exchange layer and the analysis back ends. To
avoid naming ambiguities, when the terms modeling front end and analysis
back end are used throughout the thesis, this includes the actual application
sold by the vendor as well as the provided application programming interface
(API) the safety exchange layer can make use of.

A selection of available tools for architectural modeling and safety modeling
and analysis is also shown in Figure 1. The safety analysis tools are con-
nected to the analysis techniques they are able to handle [12] [13] [14] [15].

11

Note that, the architecture’s implementation in section 0 only deals with
those elements having a bold label, while the regular labeled elements are
either already integrated like the MagicDraw front end or likely to be inte-
grated in the future. In addition, the distinction between modeling and safety
analysis tools should not be understood as a sharp separation, because it’s
conceivable that a safety analysis back end tool also has modeling capabili-
ties. In this case, the tool’s usage context within the specific project needs to
be taken into account.

Safety
Exchange
Layer

Enterprise
Architect Magic Draw

Front End Layer

Model Transformation Layer

IESE Analysis
Back End

Isograph
FaultTree+

EPRI Computer-
Aided Fault Tree
Analysis System

(CAFTA)

Siemens Zusim IQ-FMEA

Markov Analysis Fault Tree
Analysis (FTA)

Failure Mode and
Effects Analysis

(FMEA)

MD APIEA API

Provides
Front End

Failure Model

Model Import
and Analysis
Results

FT+ API IESE API EPRI API Zusim API IQ-FMEA
API

Figure 1 System Context Diagram

The safety exchange layer contains the two layers front end layer (FEL) and
model transformation layer (MTL).

The FEL is mainly responsible for providing the additional functionality in or-
der to integrate safety modeling tasks directly into the specific front end ap-
plication. This is usually done by means of UML profiles and extension
mechanisms of the front end applications (e.g. add-ins in Enterprise Archi-
tect or plugins in MagicDraw), which allow the definition of complex con-
straints for the stereotypes that exceed the capabilities of UML profiles. If
safety analysis is also required, a connection to the MTL has to be estab-
lished through which the front end failure models can be transferred to the
MTL and analysis tasks can be triggered.

12

The MTL includes the core component for achieving model exchangeability
between different tools: the safety exchange model. The purpose of this col-
lection of meta-models is to incorporate all relevant properties of the sup-
ported safety analysis techniques so that a failure model modeled in any tool
can be transformed into and from the safety exchange model. These trans-
formations are provided by model transformers which have to be written for
each technique-modeling tool combination. The specific UML profiles from
FEL have to be created according to the previously defined safety exchange
model. The second responsibility of the MTL is the communication with back
end analysis tools in order to perform safety analysis tasks.

The benefit of connecting modeling front ends by implementing front end
layers and model transformers for them is drawn from the fact that analysis
support is almost directly given, because connected back end analysis tools
only depend on the safety exchange model.

3.3 Front End Layer

This section describes the functional decomposition of the FEL and the in-
teraction structure of the identified functional units resulting from the FEL re-
quirements.

3.3.1 Front End Layer Requirements

As suggested in section 3.2, the FEL consists of the implementation of the
safety modeling functionality and the triggering of analysis tasks. The layer’s
main requirements, which have to be taken care of, are the following:

The integration of new analysis techniques and failure meta-model changes
should be doable fast.

Bearing in mind that research produces newly created or changed meta-
models steadily, it’s very likely that the FEL has to be changed frequently re-
acting to alterations. As a consequence, developers need to have a reposito-
ry that contains frequently used functionality and helps to implement higher-
level functions faster, because the basic functions just need to be parameter-
ized for the specific context. In addition, this allows to concentrate rather on
the actual changes than on the implementation of the basic functions

The common property of modularity and the support for hierarchies with fail-
ure meta-models in the context of SPES2020 need to be abstracted from to
further facilitate changes and additions.

13

Modeling and analysis issues should be separated.

There are two usage scenarios conceivable for the safety exchange layer:
The first one consists only of the creation of failure models in the front end.
The second one adds the ability to analyze the created models, too. Since
the analysis issues are optional, the separation between both tasks has to
be reflected in the FEL in order to enable independent deployment of both
parts.

3.3.2 Functional Decomposition

This section describes the functional decomposition of the FEL. Its purpose
is to identify the fundamental functional units, which are necessary to provide
the desired behavior. Note that the modeling front end EA and its extension
mechanism have had a major influence on the identification of the individual
units.

The functional decomposition of the FEL is shown in Figure 2. It consists of
four functional packages, namely Modeling, Analysis, Profile Functionality
and Model API Façade. The package structure has been chosen according
to the FEL primary requirements explained in the preceding section.

3.3.2.1 Model API Façade Package

The APIs for modeling tools allow programmatical access to the failure mod-
els created within the modeling tool. Because of the fact that the considered
tools EA and MD support the UML as a whole, the offered APIs are very ge-
neric and their application in concrete domains is difficult. In the SPES mod-
eling approach, the usage of only a small subset of UML elements, specifi-
cally Component, Part, Port, Connector and Association, has proven best for
the definition of the UML profiles. The reason is that these elements incorpo-
rate the principles of CBSE and modularity by default. As a consequence,
the Model API Façade Package constitutes a façade to the API, which con-
cretizes the generic functionality for the typical usage of the used element
subset. In the SPES context, these typical usages are model retrieval, e.g.
the retrieval of all instances that were instantiated in a component, model
modification, e.g. the synchronization of the port creation for instances to its
classifier, and model visualization, e.g. the reflection of the port synchroniza-
tion in all existing diagrams.

The introduction of this façade facilitates the usage of the provided API and
provides a reusable and basic function repository, which is supposed to be
used from all other packages in order to implement quickly new functionality
or changes alike.

14

3.3.2.2 Profile Functionality Package

The most important unit of this package is the UML Profile/Diagram Defini-
tion. For EA and MD, these definitions can be created declaratively from
within the specific modeling tool.

Front End Layer

Modeling Analysis

Model API Facade

Profile Functionality

UML Profile/
Diagram

Definitions

Key

Functional Packages

Syntactic
Model

Validation

Usability

User
Modeling Event

Handler

Result
Presentation

Result
Processing

Front End
Analysis

Event
Handler

Model Export

Model
Retrieval

Model
Modification

Model
Visualization

Component
Model

Constraints

Failure Model
Constraints

Failure Model
Common

Functionality

Functional Units

Figure 2 Front End Layer Functional Decomposition

Since the definition of stereotype constraints directly in the profiles is not
flexible enough, they have to be expressed by means of a more powerful
mechanism. Although the Object Constraint Language (OCL) [16] indeed
encompasses the capabilities to do so, the complexity of OCL itself is a limit-
ing factor. The chosen approach in this thesis for defining complex con-
straints is by implementing them in code. The units Component Model Con-
straints and Failure Model Constraints have been distinguished to highlight

15

the fact that the first one only contains constraints for the central meta-model
in SPES, while the second one incorporates the constraints for all supported
analysis techniques. The constraints are mostly syntactical restrictions, e.g.
rules how model elements are allowed to be connected together.

Due to the heterogeneity requirement concerning failure meta-models and
the resulting abstraction from specific analysis techniques in the context of
SPES, all failure meta-models share some behavior, e.g. the handling of
their interface failure modes, the which is put in its own unit to avoid duplica-
tion of identical behavior.

3.3.2.3 Modeling Package

This package’s responsibility is to react to modeling events triggered by ei-
ther the user or the modeling tool, e.g. creating and deleting elements or se-
lecting modeling commands from custom menus. These modeling actions
have to be checked for syntactical correctness according to the defined me-
ta-models. The rule set for the syntactical validation is defined by means of
constraints in the Profile Functionality Package.

The usability unit contains functionality to facilitate the modeling activity. This
includes for example the automation of tasks with several intermediate steps
like the synchronization for port changes in a component with all its instanc-
es as well as the simplification of tasks which are tedious to achieve by de-
fault like the parameterization of a CFT.

3.3.2.4 Analysis Package

The Analysis Package incorporates all functional units which are related to
safety analysis tasks.

This includes the export of front end failure model representations, which is a
mechanism for selecting and optionally serializing the relevant combination
of failure models and parameters for specific analysis tasks. Serialization is
necessary, if the MTL doesn’t have direct access to the front end data mod-
el.

The unit Front End Analysis Event Handler reacts to the triggering of analy-
sis events by the user and controls the analysis process, i.e. it delegates the
serialized failure model and the desired analysis operation properties to the
MTL, which returns the analysis results after the analysis execution.

Analysis results need to be presented to the user in a comprehensive way,
so specific UI dialogs for each analysis operation are located in the Result
Presentation unit. In real systems, the sheer data size of the analysis results
can be huge, so it’s necessary to represent them with an appropriate data

16

structure to enable performant result retrieval needed for visualization. The
storage of results directly within the failure model is especially useful, when
analysis tasks have a long computation time or when the failure model is re-
used but not delivered entirely because of intellectual property hiding.

3.3.3 Layer Interface and Interaction Structure

The purpose of this section is to present the FEL’s interface to its environ-
ment and the interaction structure of the functional units identified in section
3.3.2 during the execution of primary use cases. These issues are visualized
in Figure 3 by means of a UML Component Structure Diagram.

3.3.3.1 Front End Layer Interface

A key requirement for the proper operability of the FEL is the presence of an
API for the modeling tool. The API serves two purposes: Firstly, it provides
programmatical access to the modeling tool’s data model. This data model is
not supposed to be accessed directly by any component inside the FEL ex-
cept the Model API Façade component (see section 3.3.2 for details). Sec-
ondly, it asynchronously notifies registered entities of modeling and analysis
events, which are either user-triggered or triggered by the modeling tool it-
self. These events are delegated to User Modeling Event Handler and Front
End Analysis Handler, which implement the logics for the execution of the
tasks associated with the events.

The FEL provides two interfaces which are required by the MTL. When safe-
ty analysis tasks should be executed, the FEL acts as Safety Analysis Ser-
vice Consumer and has to delegate those tasks to the MTL, including the
relevant parameterized failure models. The delegation happens asynchro-
nously, which means that several analysis tasks can be performed in paral-
lel.

The other interface provides direct access to the serialized front end failure
model. It is separated from the safety analysis task delegation, because ex-
ported failure models could also be used separately, e.g. for the pure ex-
change of models between tools or for their persistent storage on the file
system.

3.3.3.2 Use Case Execution

In Figure 3, the components colored in dark grey and light grey illustrate ex-
clusive participation in modeling and analysis activities, respectively, while
the red colored components incorporate behavior used in both use cases.

17

• Safety Modeling

During the whole modeling process, User Modeling Event Handler compo-
nent receives events, which signal the modifications that the user made to
the front end’s data model through UI or custom modeling commands.

Modeling Tool API

Front End Layer
Event Receiver Event Receiver

Event Sender Event Sender
Provides
Model
Access

Modeling Action
Notification

User-Triggered
Analysis Request

Usability

User
Modeling Event

Handler

Automation of
Manual Tasks

Model API
Facade

Model
Retrieval
Interface

Model
Visualization

Interface

Model
Modification
Interface

<<delegate>>

Front End
Analysis

Event Handler

Result
Presentation

Provides UI
Presentation
Dialogs

<<delegate>> <<delegate>>

Result
Processing

Analysis Result
Storage
Interface

Model
Export

Syntactic
Model

Validation

Provides
serialized
Front End
Safety Model

Provides
serialized
Front End
Safety Model<<delegate>>

Concrete
Model

Constraints
Provides
Complex

Constraints

UML Profile/Diagram
Definitions

Validate
Modeling

Operations

Provides
Model Export Rules

Provides Available
Modeling Elements

<<delegate>>

Safety
Analysis
Service
Consumer

Notation: UML

Provides Simple
Constraints

Used for
Modeling

Used for
Analysis

Used for Modeling
& Analysis

Figure 3 Front End Layer Interaction Structure

In the first case, the modification’s syntactical correctness has to be checked
against the available constraints. Note that in Figure 3, there isn’t any dis-
tinction between component model constraints and failure model constraints
for the sake of simplicity.

18

In the second case, the invoked custom modeling commands have to be di-
rectly executed by the FEL, i.e. that the modeling tool’s internal data model
is modified programmatically. The required information for executing the
commands is taken from the UML Profile/Diagram Definitions component.

• Safety Analysis

When safety analysis tasks are triggered, Front End Analysis Event Handler
is notified of it. Subsequently, the relevant front end failure model represen-
tation is prepared and sent to the MTL, which performs the actual analysis.
The use case continues, when the MTL returns either the result of the analy-
sis task or any occurred errors. The results are stored in the front end failure
model by Result Processing component and can be retrieved by Result
Presentation component which has the knowledge for filling the UI result dia-
logs with data.

3.4 Model Transformation Layer

This section describes the functional decomposition of the MTL and the in-
teraction structure of the identified functional units resulting from the MTL re-
quirements.

3.4.1 Model Transformation Layer Requirements

The parts of the primary requirements presented in section 3.1, which are
relevant for the MTL, are:

The implementation of the safety exchange model should be provided.

Front end and back end adapter implementations should be separated from
the safety exchange model implementation.

Due to the fact that the safety exchange model should not depend on possi-
ble adapted modeling front ends and analysis back ends, it is necessary to
reflect this separation in the layer structure. On the one hand, this facilitates
the impact analysis for changes in the safety exchange model and on the
other hand, it enables the ability to individually choose those front ends and
back ends that should be incorporated in the deployed MTL binary.

3.4.2 Functional Decomposition

This section describes the functional decomposition of the MTL. It is visual-
ized by a UML package diagram in Figure 4.

19

Model Transformation Layer

Generic Safety Exchange
Model

Front End Adapter

Front End
Failure Model
Transformer

Front End
Communication Model Validation

Safety
Development

Model

SDM Internal
Transformations

Back End Adapter

Failure Model
Preprocessor

Back End Tool
Communication

Facade

Key

Functional Packages Functional Units

MTL Analysis Task Control

Figure 4 Model Transformation Layer Functional Decomposition

3.4.2.1 Generic Safety Exchange Model Package

The most important unit of this package is the Safety Development Model
(SDM), which is the implementation of the safety exchange model mentioned
in section 3.1. Apart from a mechanism to create models in a declarative
way, the key objective for the implementation of this unit is to achieve the in-
tegration of several safety analysis techniques under a modular perspective.
All other units of this package are built around this model implementation
and operate on it. In the developed prototype, the chosen modeling frame-
work for generating source code from the declarative defined models is the
Eclipse Modeling Framework (EMF) that is Java-based. This is mentioned in
this section, because it’s an architectural decision that has an impact on MTL
development, namely that the other units of the MTL have to be developed in
Java, too.

The Model Validation unit has the responsibility to check the present failure
models for syntactic and semantic rules defined for their meta-model ele-
ments. Note that according to section 3.3.2, syntactical validation rules are

20

also checked in the Syntactical Model Validation unit in FEL. Both units have
the same underlying rule set, but in order to be flexible concerning pure
model import to the MTL without a full-fledged front end adapter, this func-
tionality is duplicated. Nevertheless, the main responsibility of the Model Val-
idation unit is to check for semantic rules, such as the check for Boolean
loops or instantiation loops in CFTs.

Because of the fact that commercial safety analysis tools do not support the
modular variants of failure meta-models developed in the context of
SPES_XT by now, it is necessary to be able to transform the modular mod-
els into flat models, which can subsequently be directly passed to the re-
spective safety analysis tools. The SDM Internal Transformations unit takes
care of this task and provides additional functionality performing optimization
on the resulting models. An example for such an optimization is the reduc-
tion of CFTs. This is possible, because CFTs represent Boolean formulas
that can be reduced by the axioms of Boolean algebra.

3.4.2.2 Front End Adapter Package

With the SDM implementation as a basis, front end modeling tools are inte-
grated by means of front end adapters, which implement the communication
interface towards the FEL and the rules for the transformation from front end
specific failure models to the respective failure models from the SDM.

While the Front End Communication unit acts as an access point for receiv-
ing incoming safety analysis requests and implementing the deserialization
of the included failure models, the Front End Failure Model Transformer unit
implements their transformation to the SDM. Note that there is a difference
between this unit and the SDM Internal Transformations unit: although both
implement transformations, their input models are different. In the first case,
the input models are serialized failure models coming from the front end,
while in the second case, the failure models are already available in the
SDM format.

3.4.2.3 Back End Adapter Package

The counterpart to the Front End Adapter Package implements the interface
to the supported back end analysis tools.

The Failure Model Preprocessor unit is responsible for preparing failure
models from SDM for the analysis with a specific back end analysis tool. Due
to the diversity of such tools’ interfaces, the functionality of this unit can be
very different. In general, it provides all necessary information for performing
the safety analysis.

21

Related to the above mentioned diversity, the Back End Tool Communica-
tion Façade is a rather abstract unit, which represents a façade to simplify
the usage of a specific back end tool API. It is modeled in the architecture,
because a common interface for analysis, which abstracts from the specific
issues of a back end tool, should be provided for MTL developers.

3.4.2.4 MTL Analysis Task Control Unit

This unit is of rather logical than functional nature, because it only controls
safety analysis tasks inside the MTL, i.e. it uses the functionality of the MTL
packages to perform the analysis tasks. The introduction of this unit serves
for the decoupling of front end adapters from back end adapters.

3.4.3 Layer Interface and Interaction Structure

This section describes analogously to section 3.3.3 the MTL’s interface as
well as its interaction structure by means of the use case “Safety Analysis”.
These topics are visualized in Figure 5 by a UML Component Structure Dia-
gram.

3.4.3.1 Model Transformation Layer Interface

As depicted in section 3.3.2, safety analysis tasks are not directly executed
in the FEL but delegated to the MTL. Therefore, in the MTL, there exist two
ports acting as required interfaces for receiving serialized front end failure
models and safety analysis requests. While the Safety Analysis Service Pro-
vider port receives analysis requests from the FEL asynchronously and thus
is the main entry point for analysis, it’s also possible to import previously
stored front end failure models directly into the MTL. This is a lightweight ap-
proach for an intermediate step before implementing a full-fledged front end
modeling tool extension. In addition, it facilitates the integration of the MTL
into environments, where a lot of legacy failure models are present.

The third port of the MTL is the one, which requires the specific back end
analysis tool’s API. It provides prepared safety analysis requests for the spe-
cific back end analysis tool and receives the analysis results.

3.4.3.2 Safety Analysis Use Case Execution

As soon as an asynchronous safety analysis task is triggered from the FEL,
the Front End Communication component is notified and deserializes the at-
tached front end specific failure model. Subsequently, the control is passed
to the MTL Analysis Task Control which has access to all necessary compo-
nents in the MTL for executing the safety analysis task. The next step is the
transformation from front end specific failure model to SDM, which is fol-
lowed by a semantic model validation. The imported SDM may be trans-

22

formed into a semantically equal model by SDM Internal Model Transfor-
mations component (see section 3.4.2 for necessities for these transfor-
mations).

At this point, the model import to SDM has been completed. The model parts
relevant for the specific analysis operation are read from the SDM by the
Failure Model Preprocessor component and subsequently the analysis re-
quest is delegated to the back end analysis tool API, which finally performs
the analysis task and returns the results. Those results are stored in the
SDM and the Front End Communication component notifies the FEL through
its Safety Analysis Service Provider interface that the results or possibly oc-
curred errors are available.

Model Transformation Layer

Model
Validation

Safet Development
Model

SDM Internal
Model

Transformations

Failure Model
Preprocessor

Front End
Failure Model
Transformer

MTL Analysis
Task Control

Back End Tool
Communication

Facade

Analysis Tool
API

Server

Client

Provides tailored
Analysis Task Information

Read
Access

Read/Write
Access

Read
Access

Analysis Task
Execution

Safety Analysis
Service Provider

<<delegate>>

<<delegate>>

Model Import
Interface

Provides
Syntactic/Semantic

Validation Rules

Analysis
Tool

Communication
Interface

Provides
Front End
Safety Model
Import Interface

<<delegate>>

Front End
Communication

Pass
Task Control
for concrete task

Notation: UML

Used for
Model Import

Used for
Analysis Shared Usage

Figure 5 Model Transformation Layer Interaction Structure

23

3.5 Analysis Back End Integration Challenges

As shown in Figure 1 in section 3.2, there is a variety on safety analysis tools
available on the market. In order to understand the differences in the API
usage of those tools as well as some typical problems, this section com-
pares the characteristics of the APIs which had already been connected to
the MTL before this thesis: the IESE Analysis Back End and FaultTree+.

The most important property of an API is the platform on which it is deployed
by its vendor. This has implications on the communication between the MTL
and the API. The problems that need to be tackled in this context are:

• Effort for communication implementation

The IESE API and the MTL are both deployed for the Java Platform. This
highly facilitates the integration of this analysis back end, because com-
munication across binaries is easy in Java. On the other hand, the Fault-
Tree+ API is deployed as a dynamic link library (DLL), so extra effort has
to be put in the communication between Java and DLLs.

• Error Handling problems

Especially, when asynchronous analysis requests are sent across plat-
forms, error handling is aggravated on the MTL side. Reasons for that
can be for example: a poor documentation of the analysis tool API; the
errors are not propagated properly to the service consumer across plat-
forms or they are not signaled at all and end up in an application crash.

Apart from platform issues, the back end tools’ APIs differ greatly in usage
comfort. This depends primarily on the degree of affinity between the SDM
and the meta-model of the specific back end analysis tool. Because of the
fact that the IESE analysis back end was developed for the SDM by design,
it is able to directly receive failure models from the SDM and analyze them.
In contrast, the FaultTree+ API has to be called once for each model ele-
ment’s transmission, which makes the parallelization of analysis tasks diffi-
cult and decreases performance because of the communication overhead.

24

25

4 System Documentation

With the layered system architecture described in section 3 as foundation,
this section deals with the documentation of the developed prototype’s im-
plementation accomplished in the course of this thesis. The chosen tools to
be connected to the model transformation layer are the front end modeling
tool Enterprise Architect and the IESE implementation and FaultTree+ as
analysis back ends for performing FTA.

4.1 Model Transformation Layer

This section presents the current development stage of the safety develop-
ment model including its failure meta-models, the applied abstract concepts
and its support for analysis. Subsequently, the design of the model transfor-
mation layer is documented including some development hints for important
tasks.

4.1.1 Safety Development Model

As mentioned in section 3.4.2, the architecture’s key component is a safety
exchange format that is able to handle multiple safety analysis techniques,
even mixed in the same failure model, as well as multiple safety analysis
back end tools. These requirements have been satisfied in the course of this
thesis by improving the previously implemented Safe Component Model
(SCM), which was proposed in [11]. The resulting integrated meta-model is
called Safety Development Model (SDM) and is this section’s topic. Section
254.1.1.1 describes the abstract concepts and failure meta-models that have
been integrated into the SDM by now. Section 4.1.1.2 explains those parts of
the SDM that have relevance, when failure models should be parameterized
and analyzed. Finally, section 4.1.1.3 gives development hints that include
the used principles for extending the SDM. The current development stage
of the SDM implementation is shown in Figure 6.

4.1.1.1 Failure Meta-Models and Abstract Concepts

The meta-models of the SCM that were affected by improvements were
namely the generic component model (GCM) and the component fault tree
model (CFT). Furthermore, four new meta-models were added: the safety
aspect component model, the failure propagation model (FPM), the structur-
al propagation model (SPM) and the abstract connection model.

26

Figure 6 Safety Development Model (SDM) Implementation

• Failure Propagation Model

Because of the fact that a “Failure View has been defined to aggregate the
commonalities of all integrated kinds of fault trees” ([11] : 69), the notion of a
failure view has to be re-thought when multiple safety analysis techniques

27

should be taken into consideration, because SPES_XT requires an abstrac-
tion from specific failure meta-models like CFTs.

Thus, the FPM has been introduced, which represents this abstraction and is
shown by the green colored stereotypes in Figure 6. It offers the possibility to
associate component models with failure models, independent of specific
techniques. In order to achieve this independence, the stereotype Fail-
urePropagationModel only exposes the failure model’s input and output fail-
ure modes, which all specific failure model stereotypes like FaultTree, Com-
ponentFaultTree or SPComponent get by inheriting from it. Thus, the ports of
a component can be associated to interface failure modes without the
knowledge of the used technique inside the failure model.

• Safety Aspect Component Model

The GCM proposed in [11] doesn’t support an instantiation concept for com-
ponents. As a consequence, reuse is prohibited in two different ways: On the
one hand, without instantiation it’s not possible to model more occurrences
of one component as part of another component. This is for example needed
in a technical system using two identical power units for redundancy. On the
other hand, the instantiation concept allows the development of more gen-
eral and powerful components, when their instances are allowed to reuse
only subsets of the provided ports of the component. In order to keep con-
sistency between components and their instances after changes or addi-
tions, synchronization mechanisms have to be implemented in both direc-
tions.

The resulting overall model in terms of SDM is called Safety Aspect Compo-
nent Model, which includes an instantiation concept as well as the associa-
tion of the component with an abstract failure model and the component’s
ports with abstract interface failure modes. Note that the current implementa-
tion of SDM does not include component integration due to the fact, that no
analysis operations exist by now that are able to take advantage of the as-
sociations between components and failure models.

• Abstract Connection Model

The third concept that has been abstracted from in the SDM implementation
is the connectivity of model elements shown by the purple colored stereo-
types in Figure 6. The idea behind it is that each model element like Gate,
BasicEvent or InputFailureMode is restricted by its theory concerning its
connectivity. A failure model element can be connected in three ways: Either
it has only incoming connections, meaning it’s a Parent, or it has only output
connections, meaning it’s a Child, or it has both types of connections, then it
is called a ConnectableElement. These restrictions can be applied for the
according stereotypes by extending the respective abstract class. Note that

28

the stereotype AbstractConnection is only once extended, namely from ste-
reotype Connection in FPM.

• Structural Propagation Model

As mentioned in section 3.1, SPES_XT also requires the possibility to model
heterogeneous failure models that use different techniques both horizontally
(at the same hierarchy level) and vertically (at different hierarchy levels),
thus a mechanism has to be provided that allows the modeling of failure
propagation through instances of failure models that are modeled with differ-
ent techniques. This approach paves the way for performing safety analysis
for whole systems regardless of the used techniques to analyze the associ-
ated components. An example for the need of the mentioned heterogeneity
can be seen in the industry, when different suppliers of system components
use different techniques, but the OEM has to prove safety for the integrated
system, though.

The introduction of the SPM, whose contents are shown with the brown col-
ored stereotypes in Figure 6, solves this issue with the creation of stereotype
SPComponent which extends stereotype FailurePropagationModel, so it can
be mapped to a component like all other failure meta-models, too. In addi-
tion, it can own FailureModelInstances that have failure inports and outports.
Note that failure inports and outports are instances of the respective inter-
face failure modes from the instantiated failure model. The benefit of this dis-
tinction is again the use of different interface failure mode subsets in different
contexts.

Since the SPM encapsulates the instantiation concept for failure models, it
can be reused in other failure meta-models. This is for example implemented
in the SDM for CFTs. For this reason, in Figure 6, stereotype Compo-
nentFaultTree inherits from stereotype SPComponent and stereotype Sub-
CFT inherits from stereotype FailureModelInstance.

• CFT and FT Models

The SDM implementation for FTs and CFTs is shown in Figure 6 with the
white colored stereotypes.

Only the specific elements BasicEvent, Gate and GateType for FaultTree
and SubCFT for ComponentFaultTree had to be modeled, because Compo-
nentFaultTree extends FaultTree and therefore inherits all FT model ele-
ments. It’s important to note that all other concepts like interface abstraction,
instantiation and connectivity restrictions could be integrated by only extend-
ing the respective abstract classes FailurePropagationModel, SPComponent
and Child, Parent or ConnectableElement. This highly facilitates the integra-

29

tion of new failure meta-models into the SDM in the future, because the ap-
plied concepts are already available in an encapsulated way.

4.1.1.2 Analysis Support

The SDM parts that have been described in the preceding section included
abstract concepts required by SPES_XT and the actual failure meta-models
for CFTs and FTs. This section deals with the SDM parts that are necessary
for the support of different safety analysis operations and analysis back end
tools, namely the parameterization of failure models, the consideration of
back end tool specific properties and the representation of analysis results.

• Model Parameterization

The concept for the parameterization of any failure model element is demon-
strated in Figure 6 by the blue colored stereotypes. When an arbitrary model
element should be parameterized it has at least to extend the most general
stereotype AnalysisElement. An AnalysisElement is currently capable of hav-
ing a parameter model for both IESE back end (IeseFailureModel) and
FaultTree+ back end (FaultTreePlusFailureModel). A parameter model is de-
fined by a failure distribution. Figure 6 shows ExponentialRate, Uniform and
Constant distributions for IESE back end, but only Fixed distribution for
FaultTree+ back end, although all FaultTree+ failure distributions are sup-
ported.

Note that normally, failure distributions are only assigned to basic failure
modes in FTA, but in theory, they could be assigned to any element extend-
ing AnalysisElement, e.g. FaultTree. This issue is an example of the fact that
the SDM is designed for being flexible concerning parameterization. The
price for this flexibility has to be paid by the MTL developers, who have to
take care that such parameterizations like in the example don’t happen.

The introduced abstract classes FailureMode as well as its subclasses
FTFailureMode, CFTFailureMode and SPFailureMode don’t have a specific
responsibility at the current stage of development, but they were included
with respect to the possible need in the future to distinguish between the el-
ements of different failure meta-models.

• Back End Tool Specific Properties

Before a parameterized SDM failure model can be handled to a back end
tool for analysis execution, it has to be packaged together with attributes that
describe back end tool specific issues. Such a package is represented in
Figure 6 by the abstract stereotype AnalysisInfo, which is colored in red. The
stereotype for a specific analysis operation with a specific back end tool has
to be extended from AnalysisInfo.

30

This has been done for the analysis with FaultTree+, including some param-
eters to enable the connection to the FaultTree+ application (programDir at-
tribute) and its API DLL (dllPath attribute) as well as the attributes unavaila-
bility, failureFrequency, primeImplicants and resultHash, which are typed da-
ta structures that include the results after the analysis execution.

The classes PrimeImplicantsCalculationInfo and SemiQuantitativeAnaly-
sisInfo represent the supported analysis operations for the IESE back end.
Note that quantitative analysis is also supported, but that is equal to a semi-
quantitative analysis, where all basic failure modes have a constant failure
distribution.

Concerning FTA, the elements, for which quantitative and qualitative analy-
sis can be performed, are output failure modes and gates. The attribute re-
sultHash has a special responsibility for all AnalysisInfo extensions, because
it maps analysis results to output failure modes and gates, which both are
extended from FailureMode, so resultHash attribute’s type
Map<FailureMode, AnalysisResult> is again an example for the flexibility of
SDM.

• Analysis Result Representation

As described above, analysis results are mapped to output failure modes
and gates within SDM. The stereotype representing the result of a specific
analysis operation is AnalysisResult. All yellow colored elements in Figure 6
are related to the representation of analysis results. Analogous to Analy-
sisInfo, AnalysisResult has to be extended for each analysis operation. The
extended class is responsible for the storage of the operation specific re-
sults, which are finally read by the MTL’s front end adapters and sent to the
front end application’s for the presentation to the user.

4.1.1.3 Development Hints

This section describes the process for adding a new analysis technique to
the SDM as well as the integration of a new analysis operation for an analy-
sis back end tool.

• Adding a new analysis technique to the SDM

1. Create an EMF ECore Model in Eclipse for the new technique

2. Model stereotypes for the specific elements for the technique (like the
white stereotypes in Figure 6) and make sure that the stereotype rep-
resenting the technique like FaultTree extends stereotype Fail-
urePropgationModel.

31

3. Define the connectivity for each stereotype that is able to be con-
nected like BasicEvent or Gate. This is done by extending from Child,
Parent or ConnectableElement stereotypes (purple stereotypes in
Figure 6).

4. If the new technique should support instantiation as it’s the case with
CFTs, add a stereotype with name Sub<TechniqueName> extending
stereotype FailureModelInstance from SPM and make sure that the
technique stereotype like ComponentFaultTree also extends
SPComponent.

• Adding a new analysis operation to the SDM

1. Extend AnalysisElement with a stereotype for the back end tool (like
IESEFailureModel) which serves as base stereotype for all parameter
sets that are needed for this back end tool (see blue colored stereo-
types in Figure 6). In FTA, these are the failure distributions for the
basic failure modes.

2. Extend AnalysisResult for the new analysis operation and include at-
tributes for each result value

3. Extend AnalysisInfo for the new analysis operation and create at
least a resultHash attribute that has the type Map<FailureMode,
AnalysisResultSpecialization>, while AnalysisResultSpecialization is
the stereotype defined in 2.

4. Generate Java classes from the EMF ECore Model and use them in
the MTL development as it will be described in section 4.1.2.

4.1.2 MTL Design Documentation

This section first gives some general information of the MTL implementation
structure. Section 4.1.2.1 explains the design decisions that have been taken
during the MTL development process. Section 4.1.2.2 provides a step-by-
step list of how the MTL is extended and finally, section 4.1.2.3 presents an
example that shows which MTL implementation units are in action at what
time during semi-quantitative analysis of a CFT

Due to the fact that the implemented prototype in this thesis only deals with
two analysis back ends and FTA as analysis technique, the rather generic
structure for the MTL presented in section 3.4.2 could be concretized con-
siderably. A major influence on the concretized MTL structure has been the
existing front end implementation for MagicDraw as well as the implementa-
tion of the IESE analysis back end. Although both implementations were
aimed to match the Safe Component Model (SCM) proposed in [11], the

32

overall structure could be reused. In order to be able to join the EA adapter
consistently with the existing MagicDraw adapter, the actual MTL implemen-
tation presented in this section has a structural difference to the proposed
MTL structure from section 3.4.2, namely that the packages in the MTL are
not separated by front end adapter, safety exchange format and back end
adapter, but rather by the analysis techniques.

The resulting implementation structure is visualized by means of a UML
package diagram in Figure 7. The packages colored in blue represent pack-
ages that were already implemented at the start of this thesis. The reflection
of the model change from SCM to SDM in those packages was implemented
by some colleagues from Fraunhofer IESE. All used arrows in the diagram
are UML usage relations and when package names are addressed in this
section, the prefix “de.fhg.iese” is left out because of the fact that all MTL
implementation packages reside in “de.fhg.iese” package.

Figure 7 MTL Implementation Structure for FTA with EA

33

4.1.2.1 Design Decisions

By virtue of each analysis technique being encapsulated in a separate pack-
age and that it should be possible to deploy the back end with different sets
of techniques, the package ea.backend has been created. Its purpose is to
provide the main class for starting the analysis server and specifying the
techniques that should be included.

• Client-Server Communication Library

The so-called server modules for each technique are stored in a separate
class like FTServerModules. They are part of the communication library
ea.algorithmServer which allows comfortable TCP message exchange be-
tween .NET and Java. The library’s characteristic feature is that messages
can be exchanged between named modules that additionally specify the be-
havior for the reaction to an incoming data message in the run(AsMessage
msg) method of the class AsModule. The usage is comfortable, because the
return value of the run method is automatically sent to the matching module
in .NET. Note that a pair of modules, one in .NET and one in Java, is identi-
fied as one communication channel, if they have the identical identifier string
on both sides.

An incoming analysis request from the FEL includes a XML serialization of
the failure model, which should be analyzed. The information, which analysis
operation should be performed with which analysis back end, is encoded in
the server modules themselves, e.g. when prime implicants should be calcu-
lated for CFTs with FaultTree+, the analysis request is triggered inside the
.NET module named “cft_primeimplicants_ft+_mod” and the message auto-
matically arrives in the matching Java module with the same name as pa-
rameter.

• dom4j XML Library

The included XML serialization of the failure model needs to be parsed, for
which the library dom4j [17] has been made use of, because the native
mechanisms for parsing XML in Java are not very comfortable. dom4j also
provides mechanisms to use the XPath language [18], which allows efficient
navigation through XML documents in an intuitive way and therefore is an
advantage in terms of code readability and code maintenance. There is
made extensive use of this feature in the failure model transformers which
are also described in this section.

• Concurrency in MTL

Each analysis operation is encapsulated in a class like CalculatePrimeImpli-
cants in ea.ft.analysis.iese package, which inherits from java.lang.Thread,

34

because this paves the way for parallel execution of several analysis opera-
tions in the long run. One could imagine this scenario in a distributed envi-
ronment where the IESE algorithm server assembly is provided on a remote
server for simultaneous usage of several customers.

In order to synchronize the main thread with the analysis operation thread at
the analysis end, the class LinkedBlockingQueue from java.util.concurrent
package has been used. One can put function calls in the queue, which au-
tomatically executes them and puts their return values in the queue, when
the function has finished executing. The key concept is that LinkedBlock-
ingQueue.take() function suspends the calling thread as long as no return
value is available.

• Failure Model Transformation

The transformation of failure models delivered from the front end into its
SDM representation is implemented in the transformer packages. As men-
tioned in section 3.4.2, the SDM is implemented by means of the EMF
framework, which builds usable java packages from the declaratively created
models. The package for the SDM implementation is sdm.model, whose
classes are accessed by the failure model transformers extensively. During
the transformation, hash maps are created for a mapping between identical
model elements in both representations, which increases the transformation
efficiency, because each model element is only transformed once. This is
useful because of the fact that multiple instantiation of failure models in dif-
ferent hierarchy levels is possible and would otherwise lead to redundancy.
The mapping keys are EMF objects representing the SDM elements which
are mapped to “Globally Unique Identifiers” (GUID) [19] assigned to model
elements in EA. Note that GUIDs are the used mechanism in EA for uniquely
identifying model elements.

• Back End Adapters

As depicted in Figure 7, the analysis operation classes can make use of the
back end adapter packages, which are ft.analysis.faulttreeplus and
ft.analysis.iese in the developed prototype. They provide classes for each
analysis operation and encapsulate the behavior for the analysis with a spe-
cific back end tool. In addition, their interfaces are similar, which makes their
usage straightforward for developers.

The back end adapter packages themselves make use of the
ft.transformation package. It provides the functionality to perform internal
model transformations within the SDM, e.g. a flattening of CFTs to FTs or a
reduction of CFTs. In addition, it performs semantic and syntactic model val-
idations during transformation like Boolean loop detection. Above all, the flat-

35

tening is important with respect to FTA, because the analysis back ends only
support analysis for flat fault trees.

4.1.2.2 Development Hints

The development tasks concerning the MTL, which are likely to be of interest
in the future, are presented in the following as step-by-step recipes. This in-
cludes the addition of a new analysis technique as well as a new analysis
operation for an existing technique.

• Adding a new analysis technique

1. Create a package for the analysis technique like ea.ft.analysis

2. Create package transformer in it and implement the transfor-
mation class for the failure meta-model transformation from its
serialization to the SDM model

3. Create package communication with a <FailureMod-
el>ServerModules class, which will consist of the communication
modules. Subsequently, register this class in ServerMain class
inside package ea.backend in order to make the created modules
accessible in the deployed assembly.

4. Start adding analysis operations

• Adding a new safety analysis operation for an existing technique

1. Create a new class for the analysis operation under the respec-
tive analysis back end package, for which this operation should
be available like CalculatePrimeImplicants in ea.ft.analysis.iese
package

2. Create a new AsModule instance in communication package of
the respective analysis technique and make use of the class cre-
ated in 1.

4.1.2.3 CFT Analysis Example

In order to provide a continuous example, which visualizes the mapping be-
tween the implementation units and the tasks they accomplish, the semi-
quantitative analysis use case with CFTs has been chosen. In Figure 8 that
part of the execution taking place in the MTL is shown, while its execution in
the FEL will be covered in section 4.2.2.4.

36

analysis request
received parse message

to XML datastructure
with dom4j library

CFT XML
representation/

SQ params

create empty
SDM CFT

transform FT elements
(output failure modes,
basic events, gates)

transform CFTs
child instances‘
failure models

recursively

transform connections,
input failure modes

[Transform
Error]

SDM CFT
create SDM

SQ-AnalysisInfo
for IESE back end

flatten SDM CFT
 to SDM FT

FT reduction

semantic model
validation

perform SQ-Analysis
on flat FT

encode results
to XML

SQ
analysis results

send response
to FEL

create
response message

1

1

encode errors
to XML

[Transform
Error]

[Transform
Error]

choose
SQ analysis

 module

ea.algorithmServer

ea.cft.analysis . transform
er ::

C
om

ponentFaultTreeG
eneratorft .

tra
ns

fo
rm

at
io

n
ft.

an
al

ys
is

.ie
se

[Validation
Error]

ea.cft.analysis.communication::
CFTServerModules

1

1

1

cft.analysis.iese::
SemiQuantitativeAnalysis

Figure 8 CFT Semi-quantitative Analysis Example in MTL

Initially, analysis request is received by the server module for semi-
quantitative analysis with the IESE back end. After the message has been
parsed, the CFT XML representation is transformed step by step into the
SDM representation. If any error occurs during the transformation, it is
stopped and the error is propagated back to the FEL, where the user is noti-

37

fied of it. Otherwise, the SDM SemiQuantitativeAnalysisInfo is prepared.
Subsequently, the SDM CFT representation is flattened to a FT and validat-
ed semantically. If the validation succeeds, the FT is analyzed by the IESE
back end algorithm for semi-quantitative analysis. Its results are encoded to
XML and packaged in a message that is sent back to the FEL by the provid-
ed communication library.

4.2 Enterprise Architect Front End

This section starts with a description of the EA tool architecture and subse-
quently describes the FEL’s implementation for EA. This includes the devel-
oper documentation for both the EA UML profiles that have been created ac-
cording to the meta-models from the SDM and the add-in that incorporates
the additional functionality used for enriching the capabilities of the EA pro-
files.

In order to develop extensions for EA, one has to be familiar with its internal,
layered architecture, which is shown in Figure 9.

Figure 9 Enterprise Architect Tool Architecture

The key component of this architecture is the EA Data Model, which can be
accessed by two mechanisms:

On the one hand, the model can be extended in a declarative way by Model
Driven Generation (MDG) technologies, which are EA means to implement

38

UML profiles. In addition, several other artifacts like diagram types and their
toolboxes or user help pages can be incorporated into a MDG technology.
On the other hand, one can make use of so-called add-ins, which offer pro-
grammatical access to the EA Data Model through the Automation Interface.
The add-ins have to be written in the .NET platform and are used for enrich-
ing MDG technologies with additional functionality.

The EA Data Model is typically stored in EA project (eap) files. They are
based on the Microsoft Jet 4.0 database engine and because of that, they
are equal to the MS Access ’97 mdb format [20].

Note that many of the EA-specific issues and terms described in this section
are described in more detail in [21]. In addition, there exist two extremely
useful e-books which originated from the EA user community and give ad-
vanced information about the development of EA extensions [22] and the in-
ternal structure of the EA Data Model [23].

4.2.1 UML Profiles in EA

4.2.1.1 MDG Technology Creation

This section shows the typical process of the MDG technology creation. In
order to visualize the artifacts created during this process, the central model
of the SPES modeling approach is used, namely the component model. The
steps for creating a new MDG technology are:

1. UML Profile Definition

2. Toolbox Profile Definition

3. Diagram Profile Definition

The first step in the process is the definition of a UML profile in EA. In gen-
eral, profiles are UML’s extension mechanism for expressing domain-specific
meta-models. A profile is defined by creating new stereotypes, constraints
and tagged values for UML meta-classes. The EA component model profile
is shown in Figure 10.

• Meta-classes and tagged values

In EA, meta-class elements have the stereotype <<metaclass>> and stereo-
type elements are marked with the «» image next to the element name. Both
of them are modeled as classes within EA. Connections with black-filled ar-
rowhead symbolize meta-class extension, while connections with white-filled
arrowhead symbolize stereotype extension.

39

Tagged values can be modeled by one of two mechanisms, either as class
attributes in a stereotype or as UML uni-directional associations between
stereotypes. It proved best to use the association mechanism for tagged val-
ues referencing other stereotypes, while tagged values of simple types like
integer are defined as attribute. Note that tagged values can only be inherit-
ed from stereotypes which extend a meta-class.

• Special EA attributes

There exist some special attributes for meta-classes and stereotypes in EA,
whose names have to start with an underscore. These are are used for de-
fining the appearance of stereotypes in diagrams (_image, sizeX, sizeY,
_lineStyle) and rules how EA treats stereotype elements internally
(_defaultDiagramType, _metatype, _instanceMode, _instanceType). The
most powerful of them is the _image-attribute, because it allows defining an
arbitrary stereotype appearance through a XML-structure with the use of a
simple scripting language called ShapeScript. Examples for shape-scripted

Figure 10 EA Component Model Profile

Component

- _instanceMode :string = Instance
- _instanceType :string =

ComponentInstance
- _metatype :string = Component

Inport

- _image :int = <Image
type="EA...

- _metatype :string = Inport
- _sizeX :int = 15 {readOnly}
- _sizeY :int = 15 {readOnly}

Outport

- _image :int = <Image
type="EA...

- _metatype :string = Outport
- _sizeX :int = 15 {readOnly}
- _sizeY :int = 15 {readOnly}

Port

«metaclass»
Component

- _defaultDiagramType :String =
Component Struc...

- _makeComposite :boolean = true

«metaclass»
Port

«metaclass»
Component

ComponentInstance

- _metatype :string =
ComponentInstance

- _image :int = <Image
type="EA...

PortConnection

- _lineStyle :int =
orthogonalR

«metaclass»
Connector

+portInstances
0..*

+type

+instances

0..*

+target

+source
+connections0..*+ports

0..*

40

appearance are given in Figure 11 for the stereotypes Inport and Outport.
Note that MDG technologies can also include images that are accessible
from shape scripts. Another important attribute is the _defaultDiagramType-
attribute, because it defines the name of custom diagram type in the form
<DiagramProfileName>::<DiagramStereotypeName>, which is automatically
created and attached to the stereotype, when it’s dragged from a toolbox.

• Diagram Types

The second step in the MDG technology creation is the definition of custom
diagram types. They are modeled in EA by diagram profiles and toolbox pro-
files, where from special meta-classes and attributes can be made use of.
This is shown exemplarily for the component internal structure diagram in
Figure 11. Normally, diagram and toolbox profiles have to be modeled in
separate diagrams, but for space issues, they are shown in one image.

A toolbox profile consists of at least one toolbox page specifying attributes
for each stereotype that should be available for modeling. By specifying a
stereotype extending the meta-class ToolBoxItemImage, custom images can
be used to further describe the stereotype’s intentional purpose directly in
the toolbox.

Diagram profiles usually consist of only one stereotype (Component Internal
Structure) extending an EA-specific meta-class representing an UML dia-
gram (Diagram_CompositeStructure). This is in most cases the UML com-
ponent structure diagram in this thesis, because it serves best for modeling
architectural structures due to its built-in support for hierarchies and modu-
larization, which are of main interest in the SPES_XT meta-models. The
most important attribute of each meta-class Diagram_<UMLDiagram> is
toolbox, whose value is the name of that EA-diagram, where the toolbox pro-
file is defined in, in Figure 11 its value is “InternalView”.

The creation of profile packages is facilitated by the usage of a wizard so-
called “Profile Helpers”, which provides dialogs that simplify the creation of
stereotypes, toolboxes and diagrams by listing all possible stereotype attrib-
utes including the EA-specific ones and their possible values.

Finally, the MDG technology has to be put together. During this task, all rele-
vant profiles, diagrams and toolboxes and optionally other resources (see
[21] for more details) are compiled into a single XML file, which can be im-
ported manually in other EA installations or, as it is done within this thesis,
directly embedded into an EA add-in.

41

Figure 11 Custom Diagram Type in EA

4.2.1.2 C²FT EA Profiles

The safety analysis technique considered for this thesis is fault tree analysis.
In order to support the modeling of FTs, CFTs and C²FTs, three profiles had
to be developed. In addition, a profile has been created for SPM. This won’t
be covered in this section, because the used EA-related concepts are similar
to the other profiles. For the interested reader, the SPM profile can be found
in Figure 23 in appendix section 6.1.

The EA component model profile, which has already been shown during the
description of MDG creation, was created according to the safety aspect
component meta-model described in section 4.1.1. Some of the modeled
tagged values are actually superfluous and modeled only for understandabil-
ity, because they are accessible through EA’s automation interface by de-
fault. These include ComponentInstance::type and PortConnec-
tion::source/target. Note that the tagged value Component::instances stores
references to the instances of other components, that it’s owning and not to
its own instances.

Although the UML provides default support for instantiation through the
meta-classes InstanceSpecification and Property, this was not practicable in
the component profile, because of the fact, that an interactive navigability

«metaclass»
ToolboxPage

Component Internal View

+ ComponentModelProfile::Component(UML::Component) = Component
+ ComponentModelProfile::PortConnection(UML::Connector) = Connection
+ ComponentModelProfile::Inport(UML::Port) = Inport
+ ComponentModelProfile::Outport(UML::Port) = Outport

«metaclass»
ToolboxItemImage

ComponentModelProfile::
Outport(UML::Port)

+ Icon :String = D:\Dropbox\Stud...

ComponentModelProfile::
Inport(UML::Port)

+ Icon :String = D:\Dropbox\Stud...

Component Internal
Structure

«metaclass»
Diagram_CompositeStructure

+ diagramID = internalview
+ frameString = #DGMTYPE# of

#D...
+ styleex = SuppConnectorLa...
+ toolbox = InternalView
+ alias = Internal Structure

42

through the component model is required and both of them are not
composite, i.e. they aren’t containers for further elements. In contrast, the
EA-representation of the meta-class Component provides the needed
functionality by its _makeComposite-attribute and it has therefore been
chosen for both stereotypes Component and ComponentInstance.

The second created EA profile is that for the CFT meta-model, which is pre-
sented in Figure 12. It supports modeling of both FTs and CFTs.

Figure 12 EA CFT Profile

For stereotypes Gate and BasicEvent the meta-class Part has been chosen,
because they need not be composite and are always instantiated inside a
parent component, which is exactly the natural notion of Part. CFT stereo-

M/N

- _image :int = <Image type="EA...
- _sizeX :int = 30 {readOnly}
- _sizeY :int = 30 {readOnly}
+ m :int = 1

XOR

- _image :int = <Image type="EA...
- _sizeX :int = 30 {readOnly}
- _sizeY :int = 30 {readOnly}

NOT

- _image :int = <Image type="EA...
- _sizeX :int = 30 {readOnly}
- _sizeY :int = 40 {readOnly}

OR

- _image :int = <Image type="EA...
- _sizeX :int = 30 {readOnly}
- _sizeY :int = 30 {readOnly}

AND

- _image :int = <Image type="EA...
- _sizeX :int = 30 {readOnly}
- _sizeY :int = 30 {readOnly}

FTConnection

- _image :int = <Image type="EA...
- _lineStyle :int = orthogonalR

FT

- _metaType :string = FT
+ missionTimeInH :int = 0

FT+AnalysisTarget
IESEAnalysisTarget

Gate

«metaclass»
Part

«metaclass»
Connector

«metaclass»
Component

- _defaultDiagramType :string =
CFT-Diagram::FT...

- _makeComposite :boolean = true

FailurePropagationModel::
InterfaceFailureMode

- _metatype = InterfaceFailureMode

FT+BasicFailureMode
IESEBasicFailureMode

BasicEv ent

- _image :int = <Image type="EA...
- _sizeX :int = 20 {readOnly}
- _sizeY :int = 20 {readOnly}

CFT

- _metaType :string = CFT
- _instanceMode :string = Instance
- _instanceType :string = CFTInstance

«metaclass»
Component

- _defaultDiagramType :string =
CFT-Diagram::CF...

- _makeComposite :boolean = true

CFTInstance

- _metaType :string = CFTInstance
- _image :int = <Image type="EA...
+ componentName :string

«metaclass»
Component

FailurePropagationModel::
FailurePropagationModel

+gates

0..*

+basicEvents 0..*

+connections0..*

+type 1

+instances 0..*

+failurePorts

0..*

43

type inherits from FT stereotype and adds instantiation capabilities to it, i.e.
CFT stereotypes are capable of owning instances of other CFTs, while FTs
are not. The CFT part of the profile is similar to the EA component profile.
Note that both stereotypes CFT and FT extend the meta-class Component
with one difference: The _defaultDiagramType-attribute stores references to
a different custom diagram in each case, which goes back to the different
sets of elements provided in each toolbox (see Figure 21 in appendix for all
other created toolboxes).

Stereotypes FT and CFT inherit from FailurePropagationModel stereotype,
which is defined in the “Failure Propagation Model” profile shown in Figure
22 in the appendix. This profile has been created to automatically supply
every new added meta-model of a safety analysis technique with interface
failure modes and the ability to map functional ports to them, just by extend-
ing from FailurePropagationModel stereotype. In addition, the mapping be-
tween component and failure model is also formalized by this extension.

Note that the failure propagation model is designed to keep flexibility for the
specific failure models as much as possible. The idea behind is to provide
concepts for them like the ability to have interface failure modes, but they
aren’t forced to use them. An example for this issue can be seen with FTs.
They are restricted by the fault tree theory, which defines that fault trees are
only allowed to have basic events and output failure modes. This restriction
is reflected in the toolbox definition for the FT-Diagram, where the stereotype
InputFailureMode is not provided.

4.2.1.3 Back End Analysis Profiles

So far, the defined profiles provide the ability to create models of FTs, CFTs,
C²FTs and SPM, but an additional requirement is to perform some kind of
analysis on these models. Depending on the sort of analysis, some of the
modeled elements require being parameterized. This section deals with the
profiles that provide the mechanisms to assign parameters to model ele-
ments.

In order to provide parameterization for stereotypes considering different
safety analysis operations and different analysis back end tools, separate
profiles for each tool have been provided. The drivers for separating model-
ing profiles from analysis profiles have been:

Support of multiple parameterizations for one stereotype by multiple inher-
itance

This means that a stereotype like CFTProfile::BasicEvent is not parame-
terized by default. Instead, it can inherit from all according back end tool
parameterization stereotypes to apply their parameterizations. These

44

are obviously those for basic failure modes, IESEBasicFailureMode
shown in Figure 13 and FT+BasicFailuremode shown in the FaultTree+
analysis profile in Figure 24 in appendix.

Figure 13 EA IESE Analysis Profile

Separation of concerns improves understandability and therefore simplifies
profile maintenance

Separation of concerns is a general principle that improves under-
standability, because only a limited amount of information that is addi-
tionally cohesive is presented at once. Applied to profiles, this means
that it would be hard to identify all analysis related contents, if the pro-
files were mixed up. Furthermore, the stereotypes of the failure meta-
model that are used for modeling like BasicEvent or Gate from CFTPro-
file don’t need to be changed directly, when for example new failure dis-

«enumeration»
BE-FailureModel

 Constant
 Uniform
 IESERate

Failure DistributionConstant

+ cValue :double = 0.0

Uniform

+ lowerBound :double = 0.0
+ upperBound :double = 0.0

IESERate

+ iFailureRate :int = 0
+ iRepairRate :int = 0

IESEBasicFailureMode

+ failureDistribution :
BE-FailureModel

IESEAnalysisTarget

+ numberOfSamples :int = 1000
+ analysisDate :int
+ semiQuantitativeResult :double [0..*]
+ quantitativeResult :double [0..*]
+ primeImplicants :string [0..*]

FT+BasicFailureMode

CFTProfile::BasicEv ent

FT+BasicFailureMode
InterfaceFailureMode

FailurePropagationModel::
InputFailureMode

FT+AnalysisTarget
InterfaceFailureMode

FailurePropagationModel::
OutputFailureMode

FT+AnalysisTarget

CFTProfile::Gate

«metaclass»
Property

45

tributions are added to the analysis profile. Instead, they receive the ad-
ditional distributions automatically just by the existing inheritance.

Modeling profiles should be able to be deployed without analysis capabilities

Possibly, the tool will be used in some contexts only for the creation of
failure models. Thus, the separation of analysis profiles from modeling
profiles minimizes the effort for removing analysis capabilities from
modeling elements, namely just the extension relations need to be re-
moved.

Exemplarily, the analysis profile for the IESE analysis back end is shown in
Figure 13 (see Figure 24 in appendix for FaultTree+ analysis profile). It is
capable of parameterizing the basic failure modes of CFTs and FTs with the
failure distributions IESERate, which is a exponential distribution, Uniform,
which is a uniform distribution and Constant, which represents a constant
failure probability. The parameterization is accomplished by inheriting from
the respective analysis stereotype owning the parameters as tagged values.
For example, BasicEvent from CFTProfile gets a failure distribution parame-
ter by inheriting from IESEBasicFailureMode. Note that IESEAnalysisTarget
also has tagged values for the storage of results of different safety analysis
tasks.

4.2.2 EA C²FT Add-In

This section presents the approach for extending Enterprise Architect pro-
grammatically as well as the concrete contents of the developed add-in for
C²FTs. In addition, it explains the design decisions that need to be under-
stood, when the add-in should be maintained or extended.

4.2.2.1 General EA Add-In Approach

The EA Automation Interface, which has already been shown in Figure 9 in
section 4.2, consists of an object model (see Figure 25 in appendix) that al-
lows programmatical access to the EA Data Model and the registration for
EA events such as user interaction with the modeling tool or model changes.
This is realized by implementing a so-called add-in for the .NET framework,
i.e. a dynamic linked library (DLL) has to be created that references the EA
Automation Interface, which is shipped with EA as a DLL called “Inter-
op.EA.dll”. In order to be automatically detected by the EA application, two
tasks have to be accomplished:

1. Add a registry key to the Windows Registry under the registry path
HKEY_CURRENT_USER/Software/Sparx Systems/EAAddins with
name <AssemblyName> and value <AssemblyName>. <MainClass-
NamepaceName>.<MainClassName>.

46

2. Register the add-in assembly to the .NET framework’s global assem-
bly list by invoking the command

<RegAsmPath>/RegAsm.exe <AssemblyPath>/<AssemblyName> /codebase

on the command line1.

The specified main class in step one has a special responsibility: Callbacks
for EA events have to be defined there. They represent the complete interac-
tion interface for the communication between the EA application and the
add-in and can be separated in the following categories:

MDG Events allow it for example to embed MDG technologies directly into
the DLL, which is the chosen approach in the C²FT add-in.

• Add-In Events notify the add-in for example when custom menu items of
the add-in are clicked or when the EA application is closed.

• Context Item Broadcast Events notify the add-in when the user changes
or double-clicks the selected item.

• Pre Creation and Post Creation Broadcast Events notify the add-in be-
fore and after an element is created.

• Pre Deletion Broadcast Events notify the add-in before an element is de-
leted.

All events have in common that the notification includes context information
by means of the callback parameters so that the add-in can react appropri-
ately to the events. The passed parameters have almost in all cases types,
which are defined in the object model.

The object model’s central class representing the main entrance point to the
“EA Data Model” is Repository. It provides properties and methods that allow
the navigation through the model as well as the creation, deletion and altera-
tion of model elements and diagrams. Model elements like stereotypes de-
fined in profiles are represented by the class Element and can only be creat-
ed inside packages (class Package). Element has some collections as prop-
erties, which implement the Collection-Interface. These are collections for

1 RegAsm.exe isdeployed with the .NET framework and can usually be found under <WindowsDirecto-
ry>\Microsoft.NET\Framework\<FrameworkVersion>\RegAsm.exe

47

the associated tagged values and the elements that are owned by the parent
element within the element hierarchy. Note that there are two collections for
representing owned elements, namely Element.Elements and Ele-
ment.EmbeddedElements. EAs documentation doesn’t explain their differ-
ence clearly, but a test showed that Element.EmbeddedElements stores the
same elements as Element.Elements plus all owned ports. Packages can
contain other packages as well as diagrams (class Diagram). Connectors
may also be stereotyped elements, but they have their own representing
class Connector.

The object model also reflects the distinction between the actual model ele-
ments (classes Element and Connector) and their representation in dia-
grams (classes DiagramObject and DiagramLink, respectively).

4.2.2.2 C²FT Add-in Design

The structure of the developed EA add-in for C²FTs is presented by means
of a package diagram in Figure 14, where the majority of elements from the
FEL architecture proposed in section 3.3.2 re-emerge. Thus, the explanation
of the individual classes’ responsibilities are either clear by their names or
can be taken from the general explanations from the functional decomposi-
tion in section 3.3.2, where examples for these responsibilities are provided,
too.

The remainder of the section describes the most important issues of the
C²FT add-in design that Figure 14 doesn’t show. These are namely the ra-
tionale for the used programming paradigm, the supposed technique for ex-
tending profiles in the add-in, the used UI dialogs and how common behavior
is treated in the add-in.

• Used programming paradigm

EA add-ins are supposed to only consist of behavior that reacts to events,
which has two causes: Firstly, the “EA Data Model”, which contains the
whole information about the models from a currently opened .eap file
(=model state), is stored internally in the EA application with a limited access
through the EA API. Secondly, the broadcast events that notify add-ins of
changes to the model state provide references to the relevant elements of
the “EA Data Model” through their parameters.

As a consequence, there is no need to store the model state in the add-in
implying that the add-in consequently hasn’t any real program state at all.
Thus, a rather functional approach has been chosen for the add-in develop-
ment, i.e. the classes shown in Figure 14 contain mostly functionally related
static methods rather than being actual classes in the sense of object orien-

48

tation (OO). Even though, it is possible to use OO mechanisms like inher-
itance to abstract from common functional behavior.

• Extending declarative profiles in the add-in

As mentioned in section 4.2.1, MDG technologies containing the declarative
profile and diagram definitions can be embedded into the add-in assembly
as so-called resources. They can be loaded into the EA application with the
add-in event EA_OnInitializeTechnologies(). Note that after each technology
change the add-in has to be re-built in order to reflect the changes.

Figure 14 EA C²FT Add-In Structure

In order to extend a declarative profile in an add-in, there has been created
one class for each profile. The motivation for this has been the fact that the
names of the defined tagged values and stereotypes proved best to be en-
capsulated in constant variables to make them better maintainable. The pro-
file classes implement the profile specific behavior that cannot be expressed
directly by functions from the APIFaçade namespace. This namespace rep-

49

resents a function repository containing profile-independent behavior for
modification and retrieval of both model elements and their diagram repre-
sentations. Examples are synchronization functions for ports between in-
stances and their components or the layout of diagram elements. Note that
the profile classes are supposed to make as much use of the APIFaçade
namespace as possible to minimize code duplication and keep the mainte-
nance and optimization scope small.

• Namespace AddIn

This namespace is of special interest, because it incorporates the main class
Main which consists of the callbacks that react to the EA broadcast events.
While the class C2FT_MenuHandler defines the hierarchy of the custom
menu that is available for the user in the EA application, the class
C2FT_MenuItems incorporates the callbacks for the broadcast event
EA_MenuClick for all custom menu commands. Because of the facts that
Main already contains a lot of callbacks and that the custom menu logic is a
responsibility on its own, it has been decided to outsource this logic into
separate classes.

• Used UI dialogs

The namespaces Usability and ResultPresentation only consist of user inter-
face dialogs created with the library for windows forms located by default in
.NET framework namespace System.Windows.Forms. Especially the clas-
ses of the Usability namespace are likely to be useful for future add-in ex-
tensions, because they have been developed for generic use.

• Common behavior of failure meta-models

With FailureInstanceContainerBase and FailurePropagationModel in Profile-
Functionality namespace, the handling of instances and interface failure
modes, respectively, is abstracted from, so most of the work for the integra-
tion of a new failure meta-model is done by inheriting from FailureIn-
stanceContainerBase and using the functionality defined in FailurePropaga-
tionModel. Thus, the actual profile classes contain only specific functionality
for each respective failure meta-model, apart from hierarchical and interface
issues. This approach has been applied successfully for the “CFT” and
“Structural Propagation” profiles’ programmatic extensions defined in classes
“CFT” and “StructuralPropagationModel”.

• Abstraction from analysis tasks

The behavioral “Gang of Four”-design pattern “Template Method” [24] is
used for facilitating the implementation of new analysis operations by means
of the class AbstractAnalysisTask, which is the base class for each imple-

50

mented analysis operation like PrimeImplicantCalculator or QuantitativeAna-
lyzer. It encapsulates validation error handling, the asynchronous delegation
of analysis tasks to the MTL and most important, the control sequence for
analysis operations, i.e. only the contents of failure meta-model specific
functions have to be implemented, not their correct invocation sequence.
The functions include for example the serialization for a specific failure meta-
model or how analysis results are presented and stored.

In addition, the AbstractAnalysisTask catches validation errors that are
thrown in the ModelRuleValidator class. This class offers the possibility to
define several rule sets that can be checked for a given serialized failure
model. For example, there is a rule set for CFTs that checks if parameters
for the required analysis operation are set correct and if element names
don’t contain forbidden characters. These are only simple checks but the val-
idator is designed to be very flexible concerning the addition and the reuse of
rules. For defining rule sets, it uses the concept of C# delegates, which can
be compared to C++ function pointers that are type-safe. The idea is that
each rule is defined in one function and a rule set is just an array of dele-
gates to the considered functions. The concept is similar to that of commonly
used unit testing frameworks like JUnit [25], where the rule sets are similar to
test suites and the rules are similar to test cases.

The serialized and validated failure models are sent to the MTL during anal-
ysis. For the communication between FEL and MTL, the .NET part of the ex-
istent communication library already described in section 4.1.2 is used.

4.2.2.3 Development Hints

This section gives two possible procedures for the intended sequence of de-
velopment tasks for adding new features to the add-in.

• Adding a new analysis operation to the add-in

1. Add a menu entry to AddIn::C2FT_MenuItems by adding a class im-
plementing the interface IMenuItem

2. Register menu entry to menu structure in AddIn::C2FT_MenuHandler

3. Add a new communication module to Analysis::AlgorithmClient

4. Create a class for the analysis operation inheriting from Analy-
sis::AbstractAnalysisTask and implement the abstract methods by
using the communication module created in 3.

5. Create or reuse a windows forms UI dialog class from Analy-
sis::ResultPresentation to present the results to the user

51

• Adding a new failure meta-model to the add-in

1. Create a class for the failure meta-model profile inheriting from Pro-
fileFunctionality::FailureInstanceContainerBase

2. Store there all tagged values and stereotypes defined in the declara-
tive profile

3. Use ProfileFunctionality::FailurePropagationModel and APIFaçade
namespace functionality to implement the profiles extended behavior

4. Create a namespace under Analysis namespace for the safety anal-
ysis technique, which contains namespaces for each supported safe-
ty analysis back end

5. Create a class in Analysis::Model Export namespace for XML seriali-
zation of the meta-model in case analysis is required

6. Add a new model validation rule set for the added failure meta-model
to Model Export::ModelRuleValidator and define rules for it

7. Add a menu entry to AddIn::C2FT_MenuItems by adding a class im-
plementing the interface IMenuItem

8. Register menu entry to menu structure in AddIn::C2FT_MenuHandler

9. Create callbacks for the needed add-in broadcast events and use the
methods from profile class to implement the callbacks appropriately

4.2.2.4 CFT Analysis Example

The sequence of the tasks done during the semi-quantitative analysis of
CFTs in the FEL is visualized by a UML activity diagram in Figure 15. Its
chronological continuation in the MTL has already been shown in Figure 8 in
section 4.1.2.3.

Initially, the menu command for semi-quantitative analysis is clicked by the
user, which causes the EA API to fire the EA_Clicked broadcast event to the
add-in, where the callback is called. Since a top event from a currently
opened CFT diagram was selected, this CFT model as well as the parame-
ters needed for semi-quantitative analysis are serialized to a XML represen-
tation. In addition, a hash value for the model is computed for the XML rep-
resentation. Subsequently, the ModelRuleValidator performs a syntactical
validation by checking the rules from the rule set that has been defined for
this analysis operation. If the validation produces no errors, the top events
tagged value for semi quantitative results is checked for existing results. The

52

computed hash value for the CFT serialization is unique for the current CFT
element topology and parameterization. If results are available and the hash
value didn’t change since the last analysis of the same top event, the results
are simply retrieved from the CFT and presented to the user. Otherwise,
semi-quantitative analysis has to be performed again. Therefore, a new
analysis task is created, i.e. a message according to the ASClientLibrary
protocol is created which includes the CFT XML representation and the tar-
get top event. Subsequently, this message is sent to the MTL.

serialize
CFT

with parameters

CFT XML
representation

check serialized
CFT for

syntactical
correctness

check for existing results
and model changes

since last analysis by
comparing hash values

[No Errors]

[Errors]

user notification

present results
to user

send
message
to MTL

SQ analysis
task

[Changes or no results ex.]

load stored results

[No changes & results ex.]

SQ-Results XML

response
from MTL
received

save results in
CFT model/
update CFT
hash value

check for
propagated

errors from MTL

[Errors]

[No Errors]

1

1

An
al

ys
is

::T
ra

ns
fo

rm
at

io
n:

:
C

FT
To

XM
LC

on
ve

rte
r APIFacade::

Model
Analysis::ResultPresentation::

SemiQuantitativeResultsViewer

An
al

ys
is

::T
ra

ns
fo

rm
at

io
n:

:
M

od
el

R
ul

eV
al

id
at

or

ASC
lientLibrary

An
al

ys
is

::C
FT

An
al

ys
is

::
IE

SE
::S

em
iQ

ua
nt

ita
tiv

eA
na

ly
ze

r

create
analysis task

Ad
di

n:
:

M
ai

n

Interop::
EAEA_MenuClick

callback
CFT SQ-analysis

menu click

CFT XML
representation

Results
XML

Figure 15 CFT Semi-quantitative Analysis Example in FEL

When the ASClientLibrary receives a response from MTL, it is forwarded to
the SemiQuantitativeAnalyzer, which first checks the result XML structure for
defined error tags. If an error is found, the user is notified. Otherwise, the

53

analysis results are stored in the top events tagged value for semi-
quantitative results and then presented to the user.

4.3 Back End Integration

This section describes, which back end analysis operations have been inte-
grated in the course of this thesis and how their results are presented to the
user in EA. Furthermore, it gives a brief overview of the required tasks to in-
tegrate a new analysis back end consistently with the existing ones in the
MTL.

The main focus of the analysis back end integration in this thesis was to
demonstrate that the connection to different analysis back ends can be es-
tablished. However, not all operations that the back ends are able to perform
have been implemented.

Concerning FTA, the EA prototype supports both quantitative and qualitative
analysis. For the IESE back end, the supported quantitative operation is the
top event probability computation for constant, uniform or exponential distri-
butions, while the qualitative one is the computation of prime implicants. With
respect to FaultTree+, the prototype is able to compute minimal cut sets as
well as top event probabilities with a large range of possible failure distribu-
tions like Weibull or Poisson distributions (see [26] for a complete list).

Examples of how the analysis results are visually presented to the user in
EA can be seen in Figure 20 in section 5.1 and in Figure 26 in appendix in
section 6.1.

In case a new analysis back end adapter should be integrated, the following
tasks have to be accomplished:

1. Create a new package named after the convention
de.fhg.iese.<failureModelName>.analysis.<backendToolName>

2. Create a package inside 1, which is responsible for providing an in-
terface to the API of the back end tool in Java. This step must only be
done in the case, when the API is not implemented in Java.

3. Create another package which contains the classes that encapsulate
the actual analysis operations and use the java interface from 2.
These classes have the responsibility to transform the SDM failure
models into a representation that is understandable by the analysis
back end tool API, e.g. the flattening in case of CFT analysis with
FaultTree+. By convention, the analysis methods in the classes
should only take the respective SDM failure models as single param-
eter to keep usage easy and dependencies minimal.

54

4.4 Crosscutting Aspects

This section addresses aspects that were considered during the develop-
ment of the prototype but were also hard to be classified into front end layer
or model transformation layer.

• Failure model serialization

For the serialization of failure models, the data structure XML has been cho-
sen, because it supports hierarchies by default and because there are robust
libraries available that allow very efficient processing of XML documents,
which appears to be extremely useful when considering the size of realistic
embedded systems. For a better illustration of how the concrete serialization
looks like, a CFT example model has been created and the accomplished
analysis operation has been a prime implicants calculation with the IESE
analysis back end. The CFT model as well as its serialization and the serial-
ized analysis results can be viewed in appendix under section 6.2. Note that,
instead of serialization, it would theoretically be possible to have direct ac-
cess to the EA repository from Java by means of a Java implementation of
the EA automation interface, but this approach has not been applied, be-
cause synchronization mechanisms have to be considered, when the “EA
Data Model” is read and written by two APIs. Additionally, the APIFaçade
doesn’t have to be maintained and optimized twice.

• Validation strategy of model serialization and transformation

An important aspect with respect to model serialization and transformation is
their validation, i.e. the test whether the failure models that are modeled in
the front end are semantically equal to the SDM failure models after trans-
formation. A formal proof at the current development stage is not practicable,
because the SDM failure meta-models will likely change due to new re-
search results, so the transformation’s correctness proof would have to be
redone for each change.

For this reason, another testing strategy has been chosen: Simple failure
models have been created in EA and subsequently analyzed with the IESE
analysis back end. Simple means in this context that their complexity has
been low enough to verify the results manually. Correct analysis results im-
ply a correct model transformation under the precondition that the analysis
back end works correctly. With the intention of achieving an acceptable test
coverage for CFTs, the created test models included all available basic
modeling elements at least once and especially gates were modeled with dif-
ferent numbers for input and output connections. Special attention was paid
to CFT instantiation concerning different hierarchy levels. However, it’s worth
noting that only the intended usage of modeling elements was tested, e.g.
basic events with input connections were not tested.

55

• Error Handling

Because of the fact that there exist two different runtime environments, deci-
sions concerning error handling had to be made, namely how errors should
be propagated and where they should be presented to the user. This wasn’t
a problem before the integration of the EA front end, because MagicDraw
plugins are also developed in Java, so errors in the analysis back ends could
be directly shown to the user by means of Java UI dialogs at those places
where they occurred. During the EA integration, the approach has been tak-
en to propagate errors through the TCP communication in order to show
them in .NET UI dialogs fitting perfectly in the EA environment. The underly-
ing reason for this decision was that Java UI dialogs certainly popped up
when errors occurred, but the user didn’t notice it, because the dialog win-
dow didn’t get the focus. In addition, the user experience within EA gets im-
proved.

Figure 16 Deployment Setting and Inter-Layer Communication

56

• Deployment and inter-layer communication

The overall impression of how the communication between front end and
model transformation layer takes place and how the developed prototype in-
cluding external libraries (shown in blue) is deployed is shown in Figure 16.
Note that the Analysis namespace on .NET side and the
de.fhg.iese.ea.cft.analysis namespace on the Java side are only shown ex-
emplarily for analysis communication and are by no means complete.

57

5 Evaluation

The main task of this thesis has been the development of a prototype that in-
tegrates the ability to create and analyze safety models into the architectural
modeling tool Enterprise Architect. The considered safety analysis technique
has been FTA and it should be shown that C²FT models can be modeled in
EA and analyzed with the IESE algorithm back end as well as with the com-
mercial FTA software FaultTree+.

The developed prototype’s operation is shown by an example system that is
created and analyzed in section 5.1. Section 5.2 summarizes the require-
ments of this thesis and concludes the degree to which they have been ful-
filled. Finally section 5.3 contains some possible directions for future work
with respect to the SPES_XT requirements that have not been satisfied yet

5.1 Prototype Evaluation

The evaluation of the developed prototype in this thesis is structured in three
parts: Initially, the example system’s component model is presented with a
description of the implemented features for it. Subsequently, the failure
models for the system’s components are given as well as their parameteriza-
tion for analysis. Finally, the computed results for the implemented analysis
back ends IESE and FaultTree+ are shown.

5.1.1 Component Model

In order to perform the evaluation, an example system describes a Compo-
nentA, which is refined into two further components ComponentB and Com-
ponentC. ComponentB and ComponentC are leaf components, i.e. they
don’t contain any instances of other components and therefore their internal
structure is not relevant here.

Figure 17 External Structure (left) and Internal Structure (right) of ComponentA

58

The two possible views of the system’s component model are shown in Fig-
ure 17. On the left side, the component external structure view of Compo-
nentA is shown. As explained in section 4.2.1.2, this view is supposed to be
used, when a component’s whole refinement structure over all existing hier-
archy levels is of importance. In contrast, the component internal structure
view shown on the right side of Figure 17 depicts the realization of only one
refinement level. Note that the synchronization of model changes between
component external structure and component internal structure views, e.g.
the creation or deletion of component instances, has not been implemented
yet.

When ports are created or changed for a component instance in component
internal structure view, this is automatically synchronized with its classifier
component as well as with all of the classifier component’s instances. During
the synchronization, consistency checks for duplicate port names are per-
formed. In order to support the feature that allows component instances to
expose only a port subset of its classifier, the port deletion with component
instances hasn’t any effect on the classifier. However, the deletion in the
other direction is synchronized. When a completely-modeled component is
instantiated in another component, all of its ports are automatically instanti-
ated as well. The user’s task is then only to delete those ports, which are not
needed in the specific context.

Additionally, the prototype facilitates navigation by introducing a custom
menu for this. It’s possible to navigate from a component or one of its in-
stances directly to its associated failure model and vice versa. Depending on
the system’s structure in the EA Project Browser and its size this can be a
huge time saver. Furthermore, the prototype allows navigating from a specif-
ic component directly to all other components where the specific component
has been instantiated in.

5.1.2 C²FT Models

This section describes the C²FT models, which have been created for the
example system’s components to show the integrated safety modeling ca-
pabilities of the prototype. The models are depicted in Figure 18. Compo-
nentB’s associated failure model is a CFT, while ComponentC is associated
to a FT. According to the system’s component model, these two failure mod-
els are instantiated in the CFT, which is associated with ComponentA.

The presented failure models show all possible modeling elements for FTs
and CFTs. These include basic events, input events, output events, compo-
nent instances, fault tree connectors, port mapping connectors and the gate
types AND, OR, XOR, M/N and NOT. Although not shown in the models, it is
also possible to assign descriptive names for gates. Since the stereotype
CFTInstance didn’t deliver enough context information in its default caption,

59

this was customized to show the CFTInstance’s name as well as its classifi-
er’s name, failure model type and associated component. This can be ex-
emplarily seen for the instance of B_FailureModel in A_FailureModel, where

Figure 18 C²FT Models of Example System’s Components

“b_failureModel” is the instance’s name, “B_FailureModel” is its classifier’s
name, “CFT” is the failure model type and “ComponentB” is the associated
component.

The described features for port synchronization in component models are
analogously available for failure events with CFT instances and their classifi-
ers. This holds also true for navigation features. Note that port creations and
changes in components are also synchronized with the C²FT models.

60

Apart from modeling C²FTs, the prototype also allows to model FTs and
CFTs that are not associated to a component at all. This can be done by se-
lecting an EA package instead of an existing component, when pressing the
menu command to create a new CFT or FT.

5.1.3 CFT Analysis

This section describes the prototype’s provided mechanism to parameterize
failure models and subsequently compares the safety analysis results that
have been computed for the example system with the IESE and FaultTree+
analysis back ends.

The developed prototype is capable of performing qualitative, semi-
quantitative and quantitative analysis for C²FTs. Note that with semi-
quantitative analysis, a quantitative analysis is performed a defined number
of times, where the failure probability for basic failure modes is randomly de-
termined from a normal distribution between defined boundaries for each it-
eration. The computation results are visualized by a histogram chart. Since
randomization makes result validation difficult, semi-quantitative analysis is
not considered in this section.

Basic
Failure Mode

Failure
Model Type

Parameter
Description

Probability

c_basic1 Constant cValue 0.1
c_basic2 Constant cValue 0.3

Figure 19 CFT Parameterization Dialog and Parameterization for C_FailureModel

All parameters in the EA back end analysis profiles explained in section
4.2.1.3 are represented by tagged values. Because of the fact that EA
doesn’t provide a comfortable way for editing tagged values, a custom UI di-
alog, which can be seen in Figure 19, has been developed to enable the pa-
rameterization of failure models. The scope of this dialog is always only one
failure model, in the example it’s C_FailureModel. The upper combo box
control provides all elements that are contained by C_FailureModel, grouped

61

by their element types “Input Events”, “Output Events”, “Basic Events” and
“Gates” for a better clarity. When an element is selected, the tab control is
updated with the currently set parameters for the selected element, separat-
ed in different tabs for each supported analysis back end.

Note that many parameter descriptions have a prefix character that looks
superfluous at the first glance, however it’s mandatory, because there are
some parameters in different failure model types having the same name and
EA requires an element to have different names for different tagged values.

In order to demonstrate quantitative analysis in an understandable way, the
analysis is performed only for the example system’s ComponentC, whose
associated FT has two conjugated basic events c_basic1 and c_basic2. The
parameterization for the C_FailureModel’s basic events is shown in Figure
19. The IESE back end delivered a top event probability of 0.03 for the
C_FailureModel’s output failure mode c_failure_out with the given parame-
terization, which can be easily verified manually.

Figure 20 Example System Analysis Results

62

The qualitative analysis of the example system’s C²FT models is shown by
the computation of prime implicants in the IESE back end and minimal cut
sets in FaultTree+. As the result names already suggest, FaultTree+ elimi-
nates NOT gates from FTs to gain coherent FTs, which have minimal cut
sets as result.

Figure 20 compares the computation results of both back end tools, that of
FaultTree+ on the top and that of IESE on the bottom. They are presented in
tab controls, where a tab is available for each output failure mode or gate
that was analyzed qualitatively. The prime implicants as well as the minimal
cut sets are ordered in a manner that those results with the lowest order ap-
pear at the top of the list, because these include those implicants having the
greatest impact on the system’s safety. One can verify manually that both
results are identical except for the fact that in IESE result view, those impli-
cants having a “-“ in front of the name are negative implicants. These are
positive in the FaultTree+ result view because of the above mentioned co-
herence issue.

5.2 Conclusion

This section summarizes the requirements of this thesis and concludes to
which degree they have been fulfilled.

The Safe Component Model (SCM) should be evaluated with respect to the
SPES_XT requirements.

The SCM’s main concern was to implement the SPES modeling approach
only for fault tree analysis. This thesis contributed significantly to the evolu-
tion of the SCM to the SDM by creating and implementing the necessary
model abstractions, which were the first step to achieve an integrated
framework that allows performing safety analysis with hetereogeneous anal-
ysis techniques.

FTA should be included according to the SDM for the modeling front end EA
in connection with analysis back ends from IESE and FaultTree+.

The FT, CFT and C²FT models that resulted from the SPES_XT require-
ments have successfully been integrated both into the SDM and into EA by
means of profiles and an add-in. As a consequence, their modeling in EA is
fully supported. By means of the add-in and the implementation of the model
transformation layer, qualitative, quantitative and semi-quantitative analysis
operations can be performed for FT, CFT and C²FT models in the required
back ends. However, the actual goal was to show only in principle that anal-
ysis tasks for C²FTs can be performed for the back ends within the
SPES_XT layered architecture, so the goal’s fulfillment has been exceeded
by providing analysis capabilities for all commonly used analysis operations.

63

The developer documentation should be as comprehensive that the proto-
type implementation can be maintained and extended.

As it is usual in software development, information is presented beginning
from an abstract view on the overall system down to the detailed depiction of
different aspects of the system’s parts. This approach was followed in this
thesis’ structure, too. The architecture’s description in section 3 first puts the
notion of an abstract safety exchange layer into context. Then, it describes
the functional contents of the front end layer and model transformation layer
and their interaction in principle. Finally, their actual implementation for the
front end EA and the analysis technique FTA is explained in section 4.

Developers not familiar with the system can draw on sections 3 and 4 until
they reach the subsections including concrete development hints that help
them to maintain and extend the system. In addition, general information
about the used technologies, e.g. the EA tool architecture or the process of
creating MDG technologies, is given including the solutions for pitfalls that
have been encountered during the development of the prototype. Their doc-
umentation avoids the search for the same problem solutions again and im-
proves the development knowledge for EA developers of Fraunhofer IESE in
general.

The model transformation of failure models from front end representation to
SDM representation should be correct.

The validation strategy for the model transformation has been detailed in
section 4.4. Although the created test cases have succeeded, one has to be
aware of the fact that a huge number of different CFT models exist that can-
not be tested manually, so an automatic mechanism would be desirable that
is able to create and validate random models.

Because of the fact that on the one hand only a minimal set of test cases
has been created and on the other hand, unintended usage of model ele-
ments has not been tested, statements about the model transformation’s ro-
bustness can not be made at present development stage. However, this is
negligible considering the actual intent of the system, namely its prototype
character. At this stage, high test coverage is not needed unless the system
is supposed to be used productively.

5.3 Possible Directions for Future Work

This thesis had two different goals: On the one hand, it performed the inte-
gration of Enterprise Architect as a modeling front end tool into the SPES
tool architecture and on the other hand, it replaced the former used safety
exchange format Safe Component Model with the Safety Development Mod-
el. In this respect, one could imagine of two possible areas for future work.

64

Firstly, the EA extension for C²FTs could be developed further with respect
to usability and for more comfortable modeling capabilities, because there is
much potential for the automation of tasks like it has already been done in
the MagicDraw implementation. In addition, the current performance of the
extension is not sufficient for the use with systems of realistic size, so a per-
formance optimization could also be taken into consideration.

Secondly, in addition to fault tree analysis, SPES_XT also requires the inte-
gration of markov analysis and failure mode and effects analysis (FMEA) into
the Safety Development Model. Thus, these techniques are also candidates
for being integrated into EA in the future.

65

6 Appendix

6.1 EA Development Additional Materials

Figure 21 Toolboxes created within the front end prototype

66

Figure 22 EA Failure Propagation Model Profile

Figure 23 EA Structural Propagation Model Profile

InterfaceFailureMode

- _metatype = InterfaceFailureMode

«metaclass»
Port

FT+BasicFailureMode
IESEBasicFailureMode

InputFailureMode

- _image :int = <Image type="EA...
- _sizeX :int = 15 {readOnly}
- _sizeY :int = 15 {readOnly}
- _metatype :string =

InputFailureMode

FT+AnalysisTarget
IESEAnalysisTarget

OutputFailureMode

- _image :int = <Image type="EA...
- _sizeX :int = 15 {readOnly}
- _sizeY :int = 15 {readOnly}
- _metatype :string =

OutputFailureMode

FailurePropagationModel

CFTProfile::FT

- _metaType :string = FT
+ missionTimeInH :int = 0

«metaclass»
Association

«metaclass»
Connector

PortFailureModeMapping

- _image :int = <Image type="EA...
- _lineStyle :int = orthogonalR

ComponentFailureModelMapping

- _image :int = <Image type="EA...

SPMProfile::
StructuralPropagationModel

- _metatype = StructuralPropa...
- _instanceMode :string = Instance
- _instanceType = FailureModeInstance

CFTProfile::CFT

- _metaType :string = CFT
- _instanceMode :string =

Instance
- _instanceType :string =

CFTInstance

«metaclass»
Property

+interfaceFailureModes
0..*

67

Figure 24 FaultTree+ Analysis Profile

68

Figure 25 EA Object Model [27]

69

Figure 26 EA Analysis Result Presentation

70

6.2 XML Serialization Example

6.2.1 CFT Test Model

Figure 27 CFT XML Serialization Test Model

6.2.2 Serialized CFT

<FailureModel Name="ParentComponent" GUID="{FBB51D05-83B4-40b6-B711-CEF18CA4D542}" FailureModelType
="CFT" MissionTime="0">

 <outputFMs>
 <outputFM Name="parentFailureOut" Stereotype="OutputFailureMode" GUID="{D3AF4F2A-B63E-41e6-8356-

20FDD67B376B}" />
 </outputFMs>
 <inputFMs>
 <inputFM Name="parentFailureIn" Stereotype="InputFailureMode" GUID="{7E5A826F-7417-419e-A32E-

1AAB075BD684}" />
 </inputFMs>
 <basicEvents>
 <basicEvent Name="parentBasic" Stereotype="BasicEvent" GUID="{64E21F24-9AF6-4339-A794-
 973D867E5B52}"/>
 </basicEvents>
 <gates>
 <gate Name="" Stereotype="NOT" GUID="{A5E2C564-7A48-4f59-B3AA-B105A60AE15C}" />
 <gate Name="" Stereotype="OR" GUID="{AD10B5E7-0FD6-460b-AFCD-F4D6E0E349DF}" />
 </gates>
 <FailureModelInstances>
 <FailureModelInstance Name="childCFT" GUID="{BC013602-1E8D-499a-BA7A-3C67E593CD65}">

71

 <failureInports>
 <failureInport Name="childFailureIn" Classifier="{2465A975-81A0-42b8-A85D-757C3D1FF797}"

GUID="{26413AB4-4B93-4a36-9220-D57F48AD15D0}" />
 </failureInports>
 <failureOutports>
 <failureOutport Name="childFailureOut" Classifier="{D99B3865-B404-4eed-A19E-2A0234A89864}"

GUID="{A5A02307-4AC0-4e33-8A40-EED6787319C5}" />
 </failureOutports>
 <FailureModel Name="ChildComponent" GUID="{ABEAE856-E1CA-4667-813C-CE65FC3A7F46}" FailureModel

Type="CFT" MissionTime="0">
 <outputFMs>
 <outputFM Name="childFailureOut" Stereotype="OutputFailureMode" GUID="{D99B3865-B404-4eed-

A19E-2A0234A89864}" />
 </outputFMs>
 <inputFMs>
 <inputFM Name="childFailureIn" Stereotype="InputFailureMode" GUID="{2465A975-81A0-42b8-A85D-

757C3D1FF797}" />
 </inputFMs>
 <basicEvents>
 <basicEvent Name="childBasic1" Stereotype="BasicEvent" GUID="{D4CBA227-348D-4abc-A8E2-

9BA2CC5F3D4B}" />
 <basicEvent Name="childBasic2" Stereotype="BasicEvent" GUID="{AA409D42-72A5-43ed-9B41-

E6AB67995E0D}" />
 </basicEvents>
 <gates>
 <gate Name="" Stereotype="M/N" GUID="{BFE27FAE-0333-457d-B866-A4506C13EB26}" m="2" />
 <gate Name="" Stereotype="AND" GUID="{5958DE2E-613E-44dd-AB87-18C86847F1E6}" />
 </gates>
 <FailureModelInstances />
 <connections>
 <connection SourceElement="{AA409D42-72A5-43ed-9B41-E6AB67995E0D}" TargetElement="{BFE27FAE-

0333-457d-B866-A4506C13EB26}" GUID="{FC7611F8-EA39-4e7b-BF03-D3D7C39ABD8C}" />
 <connection SourceElement="{BFE27FAE-0333-457d-B866-A4506C13EB26}" TargetElement="{D99B3865-

B404-4eed-A19E-2A0234A89864}" GUID="{61142AC7-725E-40db-853D-A273930EC409}" />
 <connection SourceElement="{5958DE2E-613E-44dd-AB87-18C86847F1E6}" TargetElement="{BFE27FAE-

0333-457d-B866-A4506C13EB26}" GUID="{7DF051F8-396C-4d1d-B70E-964BA90FEF82}" />
 <connection SourceElement="{D4CBA227-348D-4abc-A8E2-9BA2CC5F3D4B}" TargetElement="{5958DE2E-

613E-44dd-AB87-18C86847F1E6}" GUID="{2D666991-F3D2-4a7a-8222-D7CF035CAB4C}" />
 <connection SourceElement="{2465A975-81A0-42b8-A85D-757C3D1FF797}" TargetElement="{5958DE2E-

613E-44dd-AB87-18C86847F1E6}" GUID="{06CDE132-6E78-4502-9202-F2A053D14AD5}" />
 </connections>
 </FailureModel>
 </FailureModelInstance>
 </FailureModelInstances>
 <connections>
 <connection SourceElement="{64E21F24-9AF6-4339-A794-973D867E5B52}" TargetElement="{A5E2C564-7A48-

4f59-B3AA-B105A60AE15C}" GUID="{984EE77B-CBE0-4313-9405-B6909916E8C0}" />
 <connection SourceElement="{A5E2C564-7A48-4f59-B3AA-B105A60AE15C}" TargetElement="{AD10B5E7-0FD6-

460b-AFCD-F4D6E0E349DF}" GUID="{E4B47117-71A1-4a41-AEC0-D8269427F68D}" />
 <connection SourceElement="{AD10B5E7-0FD6-460b-AFCD-F4D6E0E349DF}" TargetElement="{26413AB4-4B93-

4a36-9220-D57F48AD15D0}" GUID="{821554EF-5287-423d-80CD-D9A8AE70F3B4}" />
 <connection SourceElement="{A5A02307-4AC0-4e33-8A40-EED6787319C5}" TargetElement="{D3AF4F2A-B63E-

41e6-8356-20FDD67B376B}" GUID="{771E44B7-1E0C-445b-8212-DAB38D2D271A}" />
 <connection SourceElement="{7E5A826F-7417-419e-A32E-1AAB075BD684}" TargetElement="{AD10B5E7-0FD6-

460b-AFCD-F4D6E0E349DF}" GUID="{F93613F8-0FC0-4be1-AF2E-AADB06C77C2A}" />
 </connections>
</FailureModel>

72

6.2.3 Serialized Analysis Result

<PICalculationResult>
 <ElementOfInterest GUID="{D3AF4F2A-B63E-41e6-8356-20FDD67B376B}" AnalysisDate="Wed Oct 23
 20:07:42 CEST 2013">
 <PrimeImplicant Order="3">
 <implicant Name="parentFailureIn" Positive="true"/>
 <implicant Name="childCFT.childBasic2" Positive="true"/>
 <implicant Name="childCFT.childBasic1" Positive="true"/>
 </PrimeImplicant>
 <PrimeImplicant Order="3">
 <implicant Name="parentBasic" Positive="false"/>
 <implicant Name="childCFT.childBasic2" Positive="true"/>
 <implicant Name="childCFT.childBasic1" Positive="true"/>
 </PrimeImplicant>
 </ElementOfInterest>
</PICalculationResult>

73

Literature

[1] Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.V. (BITKOM),
"Eingebettete Systeme - Ein strategisches Wachstumsfeld für Deutschland" 2010. [Online].
Available: http://www.bitkom.org/de/themen/54926_62539.aspx. [Accessed Octobre 9th, 2013].

[2] International Electrotechnical Commission, IEC 61508: Functional safety of
electrical/electronic/programmable electronic safety-related systems, 2010.

[3] International organization for Standardization (ISO), Draft International Standard (DIS),
ISO/DIS 26262: Road vehicles - Functional Safety, 2009.

[4] Pohl K., Hönninger H., Achatz R. and Broy, M. (Eds.), Model-Based Engineering of Embedded
Systems: The SPES 2020 Methodology, Berlin, Heidelberg: Springer, 2012.

[5] Institute of Electrical and Electronics Engineering (IEEE), IEEE Standard Glossary of Software
Engineering Terminology, 1990.

[6] Heineman, G.T. and Councill, W.T., Component-Based Software Engineering: Putting the
Pieces Together, Amsterdam: Addision-Wesley Longman, 2001.

[7] Stahl, T. and Völter, M., Modellgetriebene Softwareentwicklung. Techniken, Engineering,
Management, 2. Ed., Heidelberg: Dpunkt Verlag, 2007.

[8] Ericson, C., „Fault Tree analysis - A History“ in: Proceedings of The 17th International System
Safety Conference, Seattle, WA, 1999.

[9] Leveson, N.G. and Harvey P.R., „Analyzing Software Safety“ in: IEEE Transactions on
Software Engineering, Vol. SE-9, No. 5, September 1983.

[10] Kaiser B., Liggesmeyer P. and Mäckel O., „A new component concept for fault trees“ in:
Proceedings of the 8th Australian workshop on safety critical systems and software,
Darlinghurst, Australia, 2003.

[11] Domis D., Integrating Fault Tree Analysis and Component-Oriented Model-Based Design of
Embedded Systems, PhD Kaiserslautern, 2012.

[12] Electric Power Research Institute, „Computer Aided Fault Tree Analysis System (CAFTA) -
Product Abstract“ [Online]. Available:
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002000020.
[Accessed October 15th, 2013].

[13] Isograph Reliability Software, „FaultTree+ - Product Description“ [Online]. Available:
http://www.isograph-software.com/2011/software/reliability-workbench/fault-tree-analysis/.
[Accessed October 15th, 2013].

[14] Siemens AG, „RAM Development for Gasification Plants, Slide 8“ May 5th, 2010. [Online].
Available: http://www.gasification-
freiberg.org/PortalData/1/Resources/documents/paper/IFC_2010/02-3-Sutor.pdf. [Accessed
October 15th, 2013].

[15] Total Quality Management, „IQ-FMEA - Product Description“ [Online]. Available:
http://www.tqm.com/software/fmea-software/iq-fmea. [Accessed October 15th, 2013].

74

[16] Object Management Group (OMG), „Object Constraint Language (OCL) Specification“
[Online]. Available: http://www.omg.org/spec/OCL/. [Accessed October 26th, 2013].

[17] „dom4j 2.0 open source java library for working with XML, XPath and XSLT“ [Online].
Available: http://dom4j.sourceforge.net/.

[18] „XPath Language Reference“ [Online]. Available:
http://www.w3schools.com/xpath/default.asp.

[19] Microsoft Developer Network, „Mithilfe von GUIDs eindeutige IDs erzeugen“ [Online].
Available: http://msdn.microsoft.com/de-de/library/bb979128.aspx. [Accessed October 23rd,
2013].

[20] Sparx Systems, „Official Website“ [Online]. Available: http://www.sparxsystems.com/.
[Accessed October 22nd, 2013].

[21] Sparx Systems, Enterprise Architect v10 Help Contents.
[22] Killian T., Scripting Enterprise Architect - A Guided tour to Enterprise Architect's scripting

capabilities, Leanpub, 2012-2013, Available: https://leanpub.com/ScriptingEA.
[23] Killian T., Inside Enterprise Architect - Querying EA's Database, Leanpub, 2012-2013,

Available:https://leanpub.com/InsideEA.
[24] Gamma E., Helm R., Johnson R.E. and Vlissides J., Design Patterns - Elements of Reusable

Object-Oriented Software, Amsterdam: Addison-Wesley Longman, 1994.
[25] „JUnit - A programmer-oriented testing unit testing framework for Java“ [Online]. Available:

http://junit.org/.
[26] Isograph Reliablity Software, FaultTree+ V11.2 Technical Specification.
[27] Sparx Systems Official Blog, „EA API Description“ March 19th, 2003. [Online]. Available:

http://blog.sparxsystems.de/2012/03/enterprise-architect-datenmodell-ea-api/. [Accessed
October 17th, 2013].

75

List of Figures

Figure 1 System Context Diagram 11
Figure 2 Front End Layer Functional Decomposition 14
Figure 3 Front End Layer Interaction Structure 17
Figure 4 Model Transformation Layer Functional Decomposition 19
Figure 5 Model Transformation Layer Interaction Structure 22
Figure 6 Safety Development Model (SDM) Implementation 26
Figure 7 MTL Implementation Structure for FTA with EA 32
Figure 8 CFT Semi-quantitative Analysis Example in MTL 36
Figure 9 Enterprise Architect Tool Architecture 37
Figure 10 EA Component Model Profile 39
Figure 11 Custom Diagram Type in EA 41
Figure 12 EA CFT Profile 42
Figure 13 EA IESE Analysis Profile 44
Figure 14 EA C²FT Add-In Structure 48
Figure 15 CFT Semi-quantitative Analysis Example in FEL 52
Figure 16 Deployment Setting and Inter-Layer Communication 55
Figure 17 External Structure (left) and Internal Structure (right) of ComponentA 57
Figure 18 C²FT Models of Example System’s Components 59
Figure 19 CFT Parameterization Dialog and Parameterization for C_FailureModel 60
Figure 20 Example System Analysis Results 61
Figure 21 Toolboxes created within the front end prototype 65
Figure 22 EA Failure Propagation Model Profile 66
Figure 23 EA Structural Propagation Model Profile 66
Figure 24 FaultTree+ Analysis Profile 67
Figure 25 EA Object Model [27] 68
Figure 26 EA Analysis Result Presentation 69
Figure 27 CFT XML Serialization Test Model 70

	1 Introduction
	2 Theoretical Foundations
	2.1 Architectural Design
	2.2 Fault Tree Analysis
	2.2.1 Technique Description
	2.2.2 Fault Tree Model Evolution

	3 Layered System Architecture
	3.1 Primary Requirements
	3.2 Big Picture
	3.3 Front End Layer
	3.3.1 Front End Layer Requirements
	3.3.2 Functional Decomposition
	3.3.2.1 Model API Façade Package
	3.3.2.2 Profile Functionality Package
	3.3.2.3 Modeling Package
	3.3.2.4 Analysis Package

	3.3.3 Layer Interface and Interaction Structure
	3.3.3.1 Front End Layer Interface
	3.3.3.2 Use Case Execution

	3.4 Model Transformation Layer
	3.4.1 Model Transformation Layer Requirements
	3.4.2 Functional Decomposition
	3.4.2.1 Generic Safety Exchange Model Package
	3.4.2.2 Front End Adapter Package
	3.4.2.3 Back End Adapter Package
	3.4.2.4 MTL Analysis Task Control Unit

	3.4.3 Layer Interface and Interaction Structure
	3.4.3.1 Model Transformation Layer Interface
	3.4.3.2 Safety Analysis Use Case Execution

	3.5 Analysis Back End Integration Challenges

	4 System Documentation
	4.1 Model Transformation Layer
	4.1.1 Safety Development Model
	4.1.1.1 Failure Meta-Models and Abstract Concepts
	4.1.1.2 Analysis Support
	4.1.1.3 Development Hints

	4.1.2 MTL Design Documentation
	4.1.2.1 Design Decisions
	4.1.2.2 Development Hints
	4.1.2.3 CFT Analysis Example

	4.2 Enterprise Architect Front End
	4.2.1 UML Profiles in EA
	4.2.1.1 MDG Technology Creation
	4.2.1.2 C²FT EA Profiles
	4.2.1.3 Back End Analysis Profiles

	4.2.2 EA C²FT Add-In
	4.2.2.1 General EA Add-In Approach
	4.2.2.2 C²FT Add-in Design
	4.2.2.3 Development Hints
	4.2.2.4 CFT Analysis Example

	4.3 Back End Integration
	4.4 Crosscutting Aspects

	5 Evaluation
	5.1 Prototype Evaluation
	5.1.1 Component Model
	5.1.2 C²FT Models
	5.1.3 CFT Analysis

	5.2 Conclusion
	5.3 Possible Directions for Future Work

	6 Appendix
	6.1 EA Development Additional Materials
	6.2 XML Serialization Example
	6.2.1 CFT Test Model
	6.2.2 Serialized CFT
	6.2.3 Serialized Analysis Result

	Literature
	List of Figures

