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Kurzfassung 

Im Kontext des Projektes Software Platform for Embedded Systems 2020 
(SPES2020) wurde die konzeptionelle Grundlage dafür geschaffen, die Er-
stellung und Analyse von Safety-Modellen in den Prozess des System De-
signs für sicherheits-kritische und software-intensive eingebettete Systeme 
zu integrieren. Außerdem wurde ein generisches Austausch-Format für Sa-
fety-Modelle entworfen, das den Modell-Austausch zwischen verschiedenen 
Modellierungs- und Analyse-Werkzeugen ermöglicht. Um die erforschten 
Konzepte für die Praxis attraktiv zu machen, müssen diese allerdings in die 
industriell benutzten Werkzeuge integriert werden. Diese Arbeit beschäftigt 
sich mit der Entwicklung eines Prototyps für das Modellierungs-Werkzeug 
Enterprise Architect (EA), der die Erstellung und Analyse von Safety-
Modellen innerhalb dieses Werkzeugs ermöglicht. Die konkret implementier-
te Analyse-Methode ist die Fehlerbaum-Analyse mit komponenten-
integrierten Fehlerbäumen (C²FT). Es wird gezeigt, dass in EA modellierte 
C²FTs in das generische Safety Austausch-Format überführt und anschlie-
ßend mit den Fehlerbaum-Analyse-Werkzeugen des Fraunhofer IESE und 
der kommerziellen Software Isograph FaultTree+ analysiert werden können. 
Der Hauptteil der Arbeit besteht aus der Entwickler-Dokumentation der ein-
geführten Schichten-Architektur und deren konkreten Implementierung für 
EA. Zusätzlich wird das bestehende C²FT-Meta-Modell evaluiert und im ge-
nerischen Safety-Austausch-Format dahingehend erweitert, dass zukünftig 
sowohl weitere Safety-Analyse-Techniken wie z.B. Failure Mode and Effect 
Analysis (FMEA) in das Format integriert werden können als auch eine Sa-
fety-Analyse durchgeführt werden kann, die unabhängig von den verwende-
ten Analyse-Techniken ist.  



 

  



 
 

Abstract 

In the context of the project Software Platform for Embedded Systems 2020 
(SPES2020) the conceptual foundations have been researched that allow to 
integrate the creation and analysis of safety models into the system design 
process for safety-critical and software-intensive embedded systems. Fur-
thermore, a generic safety exchange format has been developed that ena-
bles the exchange of safety models between different modeling and analysis 
tools. In order to make the researched approach applicable in practice, it has 
to be integrated into those tools that are commonly used in the industry. This 
thesis deals with the development of a prototype for the modeling tool Enter-
prise Architect (EA) that is able to create and analyze safety models within 
this tool. The considered analysis technique is the fault tree analysis with 
component-integrated fault trees (C²FT). It’s demonstrated that C²FT models 
that are created in EA can be transformed into the generic safety exchange 
format and subsequently analyzed with the fault tree analysis tools of the 
Fraunhofer IESE and the commercial software FaultTree+ by Isograph 
Company. The greater part of this thesis consists of the documentation for 
developers including the introduced layered architecture as well as its im-
plementation for EA. In addition, the existing C²FT meta-model is evaluated 
and the generic safety exchange format is extended in a way that on the one 
hand, further safety analysis techniques like Failure Mode and Effect Analy-
sis (FMEA) can be easier integrated into the format and on the other hand, 
safety analysis can be performed for safety models that incorporate different 
analysis techniques at the same time.  
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1 Introduction 

According to [1], 98% of all produced microprocessors are installed in em-
bedded systems. These embedded systems are used in various application 
areas and are omnipresent in our daily lives: the majority of automobiles and 
airplanes are controlled by embedded systems. In the medical sector they 
are used for example for the monitoring of vital functions or for carrying out 
irradiation therapies. Furthermore, embedded technologies are extensively 
used in devices for consumer electronics and the power supply industry. 
This implies that special attention should be paid to the development of em-
bedded systems and their software. 

Numerous examples demonstrate in its own right that embedded systems 
are safety-critical in many respects and can have an impact on the life and 
limb of people. Due to the steady increase in the complexity of such systems 
new techniques need to be developed constantly that allow to master the 
complexity, to deliver the required product quality, and to satisfy the safety 
requirements simultaneously. There exist international standards like 
IEC61508 [2] or ISO26262 [3] that propose techniques for anchoring safety 
engineering tasks into the whole development process. This includes for ex-
ample the consistent realization of safety analyses throughout the develop-
ment process. The safety analysis proved difficult particularly for complex 
system architectures; therefore, appropriate techniques need to be em-
ployed to keep the complexity as low as possible. 

The research project Software Platform Embedded Systems 2020 
(SPES2020) was started in 2009. One of the research tasks was to perform 
research for the development of concepts for software-intensive embedded 
systems applicable across industry domain boundaries. According to [4], the 
main objective of this project was to master the steadily increasing complexi-
ty of these systems by providing an integrated concept ranging from re-
quirements down to the resulting program code, independent of the specific 
domain. This includes the identification of similarities between embedded 
systems from different domains, and a high capability for the automation of 
process tasks in tools. The essential result of the project was that model-
based design (MBD) and component-based software engineering (CBSE) 
are key components for overcoming the complexity challenge mentioned 
above. Although MBD and CBSE are well suited for the reduction of system 
development complexity, their principles were not considered in traditional 
safety analysis techniques. In order to enable the seamless integration of the 
established technique fault tree analysis with the SPES2020 concepts, tradi-
tional fault trees were extended to the concept of component integrated fault 
trees (C²FT), which follow the principles of CBSE and introduce formal rela-
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tions between design components and component fault trees (CFT) for the 
first time. 

The follow-up project SPES_XT uses the results of SPES2020 and address-
es some new requirements with respect to the integration of safety analysis 
techniques. In first place different safety analysis techniques are needed on 
arbitrary system hierarchy levels as well as combined in one failure model in 
order to allow dependable and adequate statements about system safety. In 
addition to that, a tool architecture should be developed that decouples the 
safety models from the usage of specific frontend modeling and backend 
analysis tools. The vision of SPES_XT is that specific failure models of dif-
ferent frontend modeling tools can be transferred into and from one safety 
exchange format on which the backend analysis tools can operate on. This 
allows the use of arbitrary front end modeling tools as well as a better opti-
mization of the analysis algorithms. 

In the course of SPES_XT, the Fraunhofer IESE implemented such a tool 
architecture, which currently supports the safety analysis of CFTs with the 
algorithms of the commercial software FaultTree+ from Isograph Company 
and incorporated an own implementation of analysis algorithms for CFTs. 
The only supported front end modeling tool is MagicDraw (MD) from NoMag-
ic Company. The MagicDraw implementation was primarily developed as a 
constantly evolving prototype in order to evaluate the results of SPES2020 in 
practice. 

Enterprise Architect (EA) from Sparx Systems Company is widely accepted 
across the industry in architecture modeling of embedded systems and is 
preferred by some customers over MagicDraw; EA should therefore be inte-
grated as a frontend modeling tool into the tool architecture of SPES_XT, 
too. 

The main focus of this thesis rests on the implementation of this new front 
end to serve as a prototype for the integration of further front ends into the 
tool architecture, thus an integral part of this thesis is to provide sufficient 
documentation to satisfy the desired prototype character.  

Before the integration of the EA front end could happen, the existing safety 
exchange format’s meta-models, developed according to the results of 
SPES2020, had to be evaluated on the basis of the experience made with 
the available MagicDraw implementation. The source code of the IESE anal-
ysis back end, which had used the former meta-models, had also to be 
changed accordingly.  

After that, UML profiles have been created in EA, which represent the safety 
exchange format’s failure meta-models on the front end side. In order to add 
more complex functionality and enable the connection to analysis back ends, 
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an EA add-in has been developed on the .NET platform. Before that, con-
ceptional considerations had to be made on where the dividing line between 
front end side and the safety exchange format implementation should reside. 

The next step has been the transformation of the front end failure models in-
to the safety exchange format as well as the development of the connection 
to the analysis back ends, so that analysis tasks were able to be invoked 
from within the modeling front end tool. Eventually, UI dialogs inside the EA 
add-in had to be implemented, which present the results of the supported 
safety analysis operations to the user in a comprehensive and attractive 
way. 

In order to explain how the objectives of this thesis have been achieved, the 
following structure has been chosen: 

Section “Theoretical Foundations” gives an introduction on state-of-the-art 
system design principles and describes the impact that these principles had 
on the meta-models of fault tree analysis. 

With this foundation, section “Layered System Architecture” gives an over-
view of the relevant requirements of SPES_ XT and describes the resulting 
layered architecture consisting of front end layer and model transformation 
layer. This includes the functional contents of the layers and their communi-
cation with one another. In addition, the challenges for the integration of 
analysis back ends are discussed. 
The documentation of the layer architecture’s implementation with the front 
end EA is the content of the next section "System Documentation". Initially, 
the failure meta-models and abstract concepts of the current version of the 
safety exchange format implementation are presented. Then, the design of 
the model transformation layer’s implementation is described. The second 
part of this section is the description of how the front end EA has been inte-
grated. This includes the created UML profiles as well as the design of the 
EA add-in. The section ends with crosscutting design aspects applicable for 
both front end layer and model transformation layer and an overview which 
back end tools and analysis operations have been integrated so far. 

The last section of the thesis consists of the evaluation of the developed pro-
totype as well as some possible directions for future work. In addition, it con-
tains a conclusion that discusses how well the thesis’ goals have been 
achieved. 
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2 Theoretical Foundations 

This section gives an introduction to the theoretical foundations on which this 
thesis is based. Section 2.1 depicts the state of the art in the architectural 
design of software-intensive embedded systems. Then, section 2.2 introduc-
es fault tree analysis and explains how far integration into architectural sys-
tems has been accomplished.  

2.1 Architectural Design 

Due to the high complexity that is inherent to today’s embedded systems 
and therefore also to their development, high efforts have to be invested in 
order to master this complexity. On top of that, safety criticality adds an extra 
level of complexity to the development, because several additional activities 
need to be integrated in the whole development process to be able to satisfy 
safety requirements. For large systems, the adherence to development 
methods that apply proven principles helped to satisfy these requirements in 
the past. These principles and methods for handling complexity are ex-
plained with more detail in the following. 

• Modular Decomposition 

Modular Decomposition is “the process of breaking a system into compo-
nents to facilitate design and development” [5]. 

This means that a divide and conquer approach is applied, which identifies 
clearly defined units of the system. The interface of such a unit is represent-
ed by ports, which can be connected and thus define the relationships be-
tween units in a clear manner. Its advantage is that developers don’t need to 
have an overall understanding of the system that should be developed, but 
can concentrate only on that part of it, which is relevant for their specific de-
velopment task. This technique is also known as distributed development. 
Ideally, when modular decomposition is applied correctly, the development 
of a system’s components can in theory be happen completely in parallel. 
However, this is achieved in practice often only to a certain degree. 

• Integrated Views 

A View is “a representation of a whole system, from the perspective of a re-
lated set of concerns” [5]. 

In particular in embedded systems several different views can be defined 
according to this definition, e.g. functional or logical views. In addition, non-
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functional properties like safety, which is considered in this thesis, can be 
expressed as views. A system’s separation into views has the benefit that 
different aspects of it can be treated separately. However, in most cases, el-
ements can be part of different views simultaneously, because the underly-
ing system is the same. In order to enhance traceability between views, they 
have to be integrated with each other accordingly. Note that the given defini-
tion can also be applied for components instead of whole systems. 

• Interface Abstraction 

When modular decomposition is applied, components are refined into sub-
components which are themselves further refined into subcomponents and 
so on. Thus, a hierarchy is created for the purpose of reducing complexity. 
This complexity reduction is only achieved, when a limited amount of infor-
mation is needed to understand a specific component in the hierarchy, i.e. 
when subcomponents should be used in this component, they have to be 
modeled as black boxes omitting their concrete realization, which is not 
needed to model the realization of the component itself. Instead, only the 
subcomponents’ interfaces need to be exposed to understand the behavior 
of the component. This approach is called interface abstraction and enables, 
apart from complexity reduction, reuse, the easy exchange of a component’s 
realization, when its interface stays unchanged, and the division of labor.  

A typical example for the need of both modularization and interface abstrac-
tion can be seen in the industry, when a supplier company delivers a real-
ized component to the OEM Company for integration into the overall system. 
The OEM doesn’t need to know all realization details for integrating the 
component with other components, when a complete description of the inter-
face is available. 

• Component-Based Software Engineering and Model-Based Design 

The three explained principles for handling complexity are the foundation for 
the development method Component-Based Software Engineering (CBSE) 
(see [6] for a comprehensive characterization of the method) that is a com-
monly used method in state-of-the-art development of embedded systems in 
general. Thus, it has also become the proposed development method in the 
context of the SPES2020 project. 

Apart from CBSE, the Model-Based Development (MBD) method in general 
also adheres to the mentioned principles. According to [7], MBD focuses on 
the minimization of redundancy during the development of software systems 
by creating abstraction models that can express domain-specific problems in 
a much clearer way than classical approaches are capable of. Usually, the 
executable source code for the target platforms is generated from the mod-
els. In addition, the applied formalisms in MBD provide a very high potential 
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for automation. For example, changed requirements can be traced down au-
tomatically to the affected architectural elements, because there is a formal 
relation between them. 

The considered language in this thesis is the semi-formal Unified Modeling 
Language (UML) that supports modular decomposition and partially the no-
tion of views by default. Interface abstraction and integrated views can be in-
tegrated into the UML by its extension mechanism, the so-called UML pro-
files, that will be of interest in this thesis and therefore covered in section 
4.2.1 in more detail. 

2.2 Fault Tree Analysis 

This section introduces the safety analysis technique fault tree analysis 
(FTA) and its relation to architectural component models. 

2.2.1 Technique Description 

FTA is a deductive failure analysis technique that is suggested by several 
standards as part of functional safety assessment, e.g. the international 
standard IEC 61508 [2]. Its aim is to perform a top-down search for causes 
of a specific dangerous failure that can occur, typically depicted as the top 
event in a model. The causes are modeled by so-called basic events and 
represent atomic sources for failure. The idea is to relate these basic events 
logically by using so-called gates that represent Boolean operators such as 
AND, OR, NOT or XOR. 

Two kinds of analysis could be performed in FTA, namely qualitative and 
quantitative analysis.  

The most used and best known qualitative analysis operation in FTA is the 
minimal cut set computation, which provides minimal cut sets for coherent 
fault trees (FT) or prime implicants for non-coherent fault trees. A fault tree is 
coherent, if it doesn’t contain any NOT gate. Both minimal cut sets and prime 
implicants are minimal combinations of basic events that cause the analyzed 
top event to occur. This analysis type is typically used for the identification of 
those basic event sets with the smallest number of events, because in the 
extreme case, they represent a single point of failure in the system. Thus, 
they have to be considered with priority in system design in order to build 
safe and reliable systems. 

Quantitative analysis can be performed, if probability distributions can be as-
signed to all basic events in a fault tree. In this case, the minimal cut sets 
computed in the qualitative analysis can be additionally ordered after their 
occurrence probability. Due to the fact that probabilities for basic events are 
often not known exactly, e.g. when they represent software failures, it’s also 
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possible to choose random probability values from defined boundaries. In 
this case, the analysis is called semi-quantitative. 

2.2.2 Fault Tree Model Evolution 

The fault tree theory has been considered in many industry domains since its 
invention by Bell Telephone Laboratories for a rocket-launch control system 
in 1961 [8]. Because of the fact that traditional fault tree theory had been a 
well-researched area, it was also applied for software code analysis since 
the 1980s [9].  

As described in section 2.1, the complexity in embedded systems develop-
ment is successfully handled by the application of the development methods 
CBSE and MBD. However, with traditional FTA, the principles inherent to 
CBSE and MBD are not adhered to, so all their benefits are lost, because 
the continuous model synchronization between component model and FT 
model requires huge additional effort in this case. Thus, the principles need 
to be applied for FT models as well. 

An important improvement of traditional FTs addressed the problem that 
their structure had been flat, i.e. they did not have a reduction of complexity 
through modularization. This resulted in FT models that were hard to use to-
gether with their related component models. As a result, Component Fault 
Trees (CFT) were introduced by [10], which were able to reflect a modular 
structure in parallel to the basic structure of components. This was achieved 
by the introduction of both input events, which represent transfer elements 
that allow the division of a flat fault tree into modular sub trees, and special 
components, which allow the representation of these subtrees. 

“Component Fault Trees cannot be directly integrated with the generic Com-
ponent Model [...] because they do not support Interface Abstraction.” (p. 59, 
[11]). Thus, the next improvement step was taken to Component Integrated 
Fault Trees (C²FT), which were proposed in [11]. The C²FT model defines a 
formal relation between the component model and the CFT model, so failure 
modes of fault trees are formally mapped to their functional counterparts. 
This ability allows for consistency checks and traceability between both 
views. In addition, the components can be reused together with their CFTs 
because of the formal relation. 
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3 Layered System Architecture 

This section addresses the layered system architecture, which originates 
from the requirements of the SPES_XT project. In section 3.1, the most im-
portant requirements are outlined. Section 3.2 presents the resulting archi-
tecture from a high level perspective describing the interface to the system’s 
environment as well as a summary of the system contents. The following 
sections 3.3 and 3.4 present structure, runtime behavior and interfaces of 
each layer in more detail. At last, section 3.5 describes different appearance 
types of back end tool APIs as well as typical problems occurring with their 
integration. 

3.1 Primary Requirements 

Because of the fact that the SPES_XT project addresses requirements of 
several different areas, those relevant for this thesis are described in the fol-
lowing. 

The flexibility for tooling choices should be improved for stakeholders. 

In the last decade, the application environment in the area of safety model-
ing and analysis for embedded systems has evolved to a variety of solutions 
by different vendors. According to the consensus in the industries, these so-
lutions usually support several different analysis techniques, but in most 
cases have their strength solely in one technique, which forces companies to 
use tools from different vendors in order to get the best results. Most of the 
available tools don’t support a common exchange format for failure models, 
so the model exchange between different tools is aggravated. 

A key objective of SPES_XT concerning safety development is the seamless 
integration of safety analysis with system design. As a consequence, joining 
pure architectural modeling tools and pure safety modeling and analysis 
tools would reduce the dependability of stakeholders on specific tools signifi-
cantly. As a consequence, architectural modeling tools must be extended to 
include the ability to create failure models and the exchange of failure mod-
els between different tools must be substantially simplified. The second task 
is in its entirety beyond the scope of this thesis, but the developed prototype 
paved the way for coping with this task in the future. 

The consideration of those findings allows the flexibility to choose the best 
tool set in a specific context; for example, OEM integrators and suppliers in 
the automotive industry usually use different tool sets for the same analysis 
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technique, but the missing exchange format inhibits this degree of freedom, 
when much manual rework should be avoided. 

It should be possible to combine heterogeneous safety analysis techniques 
within one failure model. 

Because of the fact that the complexity as well as the required safety level of 
the developed systems and the components have grown, traditional safety 
analysis techniques like FTA have reached their limits. Thus, the necessity 
arose to research modular variants for analysis techniques like Markov anal-
ysis to be applicable within the SPES Modeling Approach. Every technique 
has its own separated failure meta-model, so it has not been possible by 
now to model the components of a system with different failure models and 
to perform safety analysis for the overall system then. Hence, a new ap-
proach needs to be introduced, which abstracts from specific analysis tech-
niques and is able to be used for overall safety analysis. 

From an industrial point of view, the expertise in the application of specific 
analysis techniques also plays an important role, because a company having 
the choice between different techniques with comparable results will obvi-
ously choose the variant that requires less time. 

Apart from the available expertise, the system’s required safety integrity level 
dictates the process of safety development including the mandatory safety 
analysis techniques, which can be more than one, dependent on the level, 
i.e. it’s likely that several techniques must be applied simultaneously. An ex-
ample for such a standard is ISO26262 [3], which covers safety aspects in 
the automotive industry and includes four (automotive) safety integrity levels 
(ASIL) with different analysis technique recommendations per level. 

3.2 Big Picture 

The proposed architecture for fulfilling the requirements stated in the preced-
ing section introduces two intermediate layers between architectural model-
ing tools and safety modeling and analysis tools as shown in Figure 1. 

The architectural solution’s context consists of three parts, namely the mod-
eling front ends, the safety exchange layer and the analysis back ends. To 
avoid naming ambiguities, when the terms modeling front end and analysis 
back end are used throughout the thesis, this includes the actual application 
sold by the vendor as well as the provided application programming interface 
(API) the safety exchange layer can make use of.  

A selection of available tools for architectural modeling and safety modeling 
and analysis is also shown in Figure 1. The safety analysis tools are con-
nected to the analysis techniques they are able to handle [12] [13] [14] [15]. 
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Note that, the architecture’s implementation in section 0 only deals with 
those elements having a bold label, while the regular labeled elements are 
either already integrated like the MagicDraw front end or likely to be inte-
grated in the future. In addition, the distinction between modeling and safety 
analysis tools should not be understood as a sharp separation, because it’s 
conceivable that a safety analysis back end tool also has modeling capabili-
ties. In this case, the tool’s usage context within the specific project needs to 
be taken into account. 
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Exchange
Layer

Enterprise 
Architect Magic Draw

Front End Layer

Model Transformation Layer

IESE Analysis
Back End
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EPRI Computer-
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and Analysis
Results

FT+ API IESE API EPRI API Zusim API IQ-FMEA
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Figure 1 System Context Diagram 

The safety exchange layer contains the two layers front end layer (FEL) and 
model transformation layer (MTL). 

The FEL is mainly responsible for providing the additional functionality in or-
der to integrate safety modeling tasks directly into the specific front end ap-
plication. This is usually done by means of UML profiles and extension 
mechanisms of the front end applications (e.g. add-ins in Enterprise Archi-
tect or plugins in MagicDraw), which allow the definition of complex con-
straints for the stereotypes that exceed the capabilities of UML profiles. If 
safety analysis is also required, a connection to the MTL has to be estab-
lished through which the front end failure models can be transferred to the 
MTL and analysis tasks can be triggered. 
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The MTL includes the core component for achieving model exchangeability 
between different tools: the safety exchange model. The purpose of this col-
lection of meta-models is to incorporate all relevant properties of the sup-
ported safety analysis techniques so that a failure model modeled in any tool 
can be transformed into and from the safety exchange model. These trans-
formations are provided by model transformers which have to be written for 
each technique-modeling tool combination. The specific UML profiles from 
FEL have to be created according to the previously defined safety exchange 
model. The second responsibility of the MTL is the communication with back 
end analysis tools in order to perform safety analysis tasks.  

The benefit of connecting modeling front ends by implementing front end 
layers and model transformers for them is drawn from the fact that analysis 
support is almost directly given, because connected back end analysis tools 
only depend on the safety exchange model. 

3.3 Front End Layer 

This section describes the functional decomposition of the FEL and the in-
teraction structure of the identified functional units resulting from the FEL re-
quirements. 

3.3.1 Front End Layer Requirements 

As suggested in section 3.2, the FEL consists of the implementation of the 
safety modeling functionality and the triggering of analysis tasks. The layer’s 
main requirements, which have to be taken care of, are the following: 

The integration of new analysis techniques and failure meta-model changes 
should be doable fast. 

Bearing in mind that research produces newly created or changed meta-
models steadily, it’s very likely that the FEL has to be changed frequently re-
acting to alterations. As a consequence, developers need to have a reposito-
ry that contains frequently used functionality and helps to implement higher-
level functions faster, because the basic functions just need to be parameter-
ized for the specific context. In addition, this allows to concentrate rather on 
the actual changes than on the implementation of the basic functions 

The common property of modularity and the support for hierarchies with fail-
ure meta-models in the context of SPES2020 need to be abstracted from to 
further facilitate changes and additions. 
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Modeling and analysis issues should be separated. 

There are two usage scenarios conceivable for the safety exchange layer: 
The first one consists only of the creation of failure models in the front end. 
The second one adds the ability to analyze the created models, too. Since 
the analysis issues are optional, the separation between both tasks has to 
be reflected in the FEL in order to enable independent deployment of both 
parts. 

3.3.2 Functional Decomposition 

This section describes the functional decomposition of the FEL. Its purpose 
is to identify the fundamental functional units, which are necessary to provide 
the desired behavior. Note that the modeling front end EA and its extension 
mechanism have had a major influence on the identification of the individual 
units. 

The functional decomposition of the FEL is shown in Figure 2. It consists of 
four functional packages, namely Modeling, Analysis, Profile Functionality 
and Model API Façade. The package structure has been chosen according 
to the FEL primary requirements explained in the preceding section. 

3.3.2.1 Model API Façade Package 

The APIs for modeling tools allow programmatical access to the failure mod-
els created within the modeling tool. Because of the fact that the considered 
tools EA and MD support the UML as a whole, the offered APIs are very ge-
neric and their application in concrete domains is difficult. In the SPES mod-
eling approach, the usage of only a small subset of UML elements, specifi-
cally Component, Part, Port, Connector and Association, has proven best for 
the definition of the UML profiles. The reason is that these elements incorpo-
rate the principles of CBSE and modularity by default. As a consequence, 
the Model API Façade Package constitutes a façade to the API, which con-
cretizes the generic functionality for the typical usage of the used element 
subset. In the SPES context, these typical usages are model retrieval, e.g. 
the retrieval of all instances that were instantiated in a component, model 
modification, e.g. the synchronization of the port creation for instances to its 
classifier, and model visualization, e.g. the reflection of the port synchroniza-
tion in all existing diagrams. 

The introduction of this façade facilitates the usage of the provided API and 
provides a reusable and basic function repository, which is supposed to be 
used from all other packages in order to implement quickly new functionality 
or changes alike. 
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3.3.2.2 Profile Functionality Package 

The most important unit of this package is the UML Profile/Diagram Defini-
tion. For EA and MD, these definitions can be created declaratively from 
within the specific modeling tool.  
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Figure 2 Front End Layer Functional Decomposition 

Since the definition of stereotype constraints directly in the profiles is not 
flexible enough, they have to be expressed by means of a more powerful 
mechanism. Although the Object Constraint Language (OCL) [16] indeed 
encompasses the capabilities to do so, the complexity of OCL itself is a limit-
ing factor. The chosen approach in this thesis for defining complex con-
straints is by implementing them in code. The units Component Model Con-
straints and Failure Model Constraints have been distinguished to highlight 
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the fact that the first one only contains constraints for the central meta-model 
in SPES, while the second one incorporates the constraints for all supported 
analysis techniques. The constraints are mostly syntactical restrictions, e.g. 
rules how model elements are allowed to be connected together. 

Due to the heterogeneity requirement concerning failure meta-models and 
the resulting abstraction from specific analysis techniques in the context of 
SPES, all failure meta-models share some behavior, e.g. the handling of 
their interface failure modes, the  which is put in its own unit to avoid duplica-
tion of identical behavior. 

3.3.2.3 Modeling Package 

This package’s responsibility is to react to modeling events triggered by ei-
ther the user or the modeling tool, e.g. creating and deleting elements or se-
lecting modeling commands from custom menus. These modeling actions 
have to be checked for syntactical correctness according to the defined me-
ta-models. The rule set for the syntactical validation is defined by means of 
constraints in the Profile Functionality Package. 

The usability unit contains functionality to facilitate the modeling activity. This 
includes for example the automation of tasks with several intermediate steps 
like the synchronization for port changes in a component with all its instanc-
es as well as the simplification of tasks which are tedious to achieve by de-
fault like the parameterization of a CFT. 

3.3.2.4 Analysis Package 

The Analysis Package incorporates all functional units which are related to 
safety analysis tasks. 

This includes the export of front end failure model representations, which is a 
mechanism for selecting and optionally serializing the relevant combination 
of failure models and parameters for specific analysis tasks. Serialization is 
necessary, if the MTL doesn’t have direct access to the front end data mod-
el. 

The unit Front End Analysis Event Handler reacts to the triggering of analy-
sis events by the user and controls the analysis process, i.e. it delegates the 
serialized failure model and the desired analysis operation properties to the 
MTL, which returns the analysis results after the analysis execution.  

Analysis results need to be presented to the user in a comprehensive way, 
so specific UI dialogs for each analysis operation are located in the Result 
Presentation unit. In real systems, the sheer data size of the analysis results 
can be huge, so it’s necessary to represent them with an appropriate data 
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structure to enable performant result retrieval needed for visualization. The 
storage of results directly within the failure model is especially useful, when 
analysis tasks have a long computation time or when the failure model is re-
used but not delivered entirely because of intellectual property hiding. 

3.3.3 Layer Interface and Interaction Structure 

The purpose of this section is to present the FEL’s interface to its environ-
ment and the interaction structure of the functional units identified in section 
3.3.2 during the execution of primary use cases. These issues are visualized 
in Figure 3 by means of a UML Component Structure Diagram. 

3.3.3.1 Front End Layer Interface 

A key requirement for the proper operability of the FEL is the presence of an 
API for the modeling tool. The API serves two purposes: Firstly, it provides 
programmatical access to the modeling tool’s data model. This data model is 
not supposed to be accessed directly by any component inside the FEL ex-
cept the Model API Façade component (see section 3.3.2 for details). Sec-
ondly, it asynchronously notifies registered entities of modeling and analysis 
events, which are either user-triggered or triggered by the modeling tool it-
self. These events are delegated to User Modeling Event Handler and Front 
End Analysis Handler, which implement the logics for the execution of the 
tasks associated with the events. 

The FEL provides two interfaces which are required by the MTL. When safe-
ty analysis tasks should be executed, the FEL acts as Safety Analysis Ser-
vice Consumer and has to delegate those tasks to the MTL, including the 
relevant parameterized failure models. The delegation happens asynchro-
nously, which means that several analysis tasks can be performed in paral-
lel. 

The other interface provides direct access to the serialized front end failure 
model. It is separated from the safety analysis task delegation, because ex-
ported failure models could also be used separately, e.g. for the pure ex-
change of models between tools or for their persistent storage on the file 
system. 

3.3.3.2 Use Case Execution 

In Figure 3, the components colored in dark grey and light grey illustrate ex-
clusive participation in modeling and analysis activities, respectively, while 
the red colored components incorporate behavior used in both use cases. 
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• Safety Modeling 

During the whole modeling process, User Modeling Event Handler compo-
nent receives events, which signal the modifications that the user made to 
the front end’s data model through UI or custom modeling commands.  
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Figure 3 Front End Layer Interaction Structure 

In the first case, the modification’s syntactical correctness has to be checked 
against the available constraints. Note that in Figure 3, there isn’t any dis-
tinction between component model constraints and failure model constraints 
for the sake of simplicity.  
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In the second case, the invoked custom modeling commands have to be di-
rectly executed by the FEL, i.e. that the modeling tool’s internal data model 
is modified programmatically. The required information for executing the 
commands is taken from the UML Profile/Diagram Definitions component.  

• Safety Analysis 

When safety analysis tasks are triggered, Front End Analysis Event Handler 
is notified of it. Subsequently, the relevant front end failure model represen-
tation is prepared and sent to the MTL, which performs the actual analysis. 
The use case continues, when the MTL returns either the result of the analy-
sis task or any occurred errors. The results are stored in the front end failure 
model by Result Processing component and can be retrieved by Result 
Presentation component which has the knowledge for filling the UI result dia-
logs with data. 

3.4 Model Transformation Layer 

This section describes the functional decomposition of the MTL and the in-
teraction structure of the identified functional units resulting from the MTL re-
quirements. 

3.4.1 Model Transformation Layer Requirements 

The parts of the primary requirements presented in section 3.1, which are 
relevant for the MTL, are: 

The implementation of the safety exchange model should be provided. 

Front end and back end adapter implementations should be separated from 
the safety exchange model implementation. 

Due to the fact that the safety exchange model should not depend on possi-
ble adapted modeling front ends and analysis back ends, it is necessary to 
reflect this separation in the layer structure. On the one hand, this facilitates 
the impact analysis for changes in the safety exchange model and on the 
other hand, it enables the ability to individually choose those front ends and 
back ends that should be incorporated in the deployed MTL binary. 

3.4.2 Functional Decomposition 

This section describes the functional decomposition of the MTL. It is visual-
ized by a UML package diagram in Figure 4.   
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Figure 4 Model Transformation Layer Functional Decomposition 

3.4.2.1 Generic Safety Exchange Model Package 

The most important unit of this package is the Safety Development Model 
(SDM), which is the implementation of the safety exchange model mentioned 
in section 3.1. Apart from a mechanism to create models in a declarative 
way, the key objective for the implementation of this unit is to achieve the in-
tegration of several safety analysis techniques under a modular perspective. 
All other units of this package are built around this model implementation 
and operate on it. In the developed prototype, the chosen modeling frame-
work for generating source code from the declarative defined models is the 
Eclipse Modeling Framework (EMF) that is Java-based. This is mentioned in 
this section, because it’s an architectural decision that has an impact on MTL 
development, namely that the other units of the MTL have to be developed in 
Java, too. 

The Model Validation unit has the responsibility to check the present failure 
models for syntactic and semantic rules defined for their meta-model ele-
ments. Note that according to section 3.3.2, syntactical validation rules are 
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also checked in the Syntactical Model Validation unit in FEL. Both units have 
the same underlying rule set, but in order to be flexible concerning pure 
model import to the MTL without a full-fledged front end adapter, this func-
tionality is duplicated. Nevertheless, the main responsibility of the Model Val-
idation unit is to check for semantic rules, such as the check for Boolean 
loops or instantiation loops in CFTs.  

Because of the fact that commercial safety analysis tools do not support the 
modular variants of failure meta-models developed in the context of 
SPES_XT by now, it is necessary to be able to transform the modular mod-
els into flat models, which can subsequently be directly passed to the re-
spective safety analysis tools. The SDM Internal Transformations unit takes 
care of this task and provides additional functionality performing optimization 
on the resulting models. An example for such an optimization is the reduc-
tion of CFTs. This is possible, because CFTs represent Boolean formulas 
that can be reduced by the axioms of Boolean algebra. 

3.4.2.2 Front End Adapter Package 

With the SDM implementation as a basis, front end modeling tools are inte-
grated by means of front end adapters, which implement the communication 
interface towards the FEL and the rules for the transformation from front end 
specific failure models to the respective failure models from the SDM.  

While the Front End Communication unit acts as an access point for receiv-
ing incoming safety analysis requests and implementing the deserialization 
of the included failure models, the Front End Failure Model Transformer unit 
implements their transformation to the SDM. Note that there is a difference 
between this unit and the SDM Internal Transformations unit: although both 
implement transformations, their input models are different. In the first case, 
the input models are serialized failure models coming from the front end, 
while in the second case, the failure models are already available in the 
SDM format.  

3.4.2.3 Back End Adapter Package 

The counterpart to the Front End Adapter Package implements the interface 
to the supported back end analysis tools. 

The Failure Model Preprocessor unit is responsible for preparing failure 
models from SDM for the analysis with a specific back end analysis tool. Due 
to the diversity of such tools’ interfaces, the functionality of this unit can be 
very different. In general, it provides all necessary information for performing 
the safety analysis.  
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Related to the above mentioned diversity, the Back End Tool Communica-
tion Façade is a rather abstract unit, which represents a façade to simplify 
the usage of a specific back end tool API. It is modeled in the architecture, 
because a common interface for analysis, which abstracts from the specific 
issues of a back end tool, should be provided for MTL developers. 

3.4.2.4 MTL Analysis Task Control Unit 

This unit is of rather logical than functional nature, because it only controls 
safety analysis tasks inside the MTL, i.e. it uses the functionality of the MTL 
packages to perform the analysis tasks. The introduction of this unit serves 
for the decoupling of front end adapters from back end adapters. 

3.4.3 Layer Interface and Interaction Structure 

This section describes analogously to section 3.3.3 the MTL’s interface as 
well as its interaction structure by means of the use case “Safety Analysis”. 
These topics are visualized in Figure 5 by a UML Component Structure Dia-
gram. 

3.4.3.1 Model Transformation Layer Interface 

As depicted in section 3.3.2, safety analysis tasks are not directly executed 
in the FEL but delegated to the MTL. Therefore, in the MTL, there exist two 
ports acting as required interfaces for receiving serialized front end failure 
models and safety analysis requests. While the Safety Analysis Service Pro-
vider port receives analysis requests from the FEL asynchronously and thus 
is the main entry point for analysis, it’s also possible to import previously 
stored front end failure models directly into the MTL. This is a lightweight ap-
proach for an intermediate step before implementing a full-fledged front end 
modeling tool extension. In addition, it facilitates the integration of the MTL 
into environments, where a lot of legacy failure models are present. 

The third port of the MTL is the one, which requires the specific back end 
analysis tool’s API. It provides prepared safety analysis requests for the spe-
cific back end analysis tool and receives the analysis results. 

3.4.3.2 Safety Analysis Use Case Execution 

As soon as an asynchronous safety analysis task is triggered from the FEL, 
the Front End Communication component is notified and deserializes the at-
tached front end specific failure model. Subsequently, the control is passed 
to the MTL Analysis Task Control which has access to all necessary compo-
nents in the MTL for executing the safety analysis task. The next step is the 
transformation from front end specific failure model to SDM, which is fol-
lowed by a semantic model validation. The imported SDM may be trans-
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formed into a semantically equal model by SDM Internal Model Transfor-
mations component (see section 3.4.2 for necessities for these transfor-
mations). 

At this point, the model import to SDM has been completed. The model parts 
relevant for the specific analysis operation are read from the SDM by the 
Failure Model Preprocessor component and subsequently the analysis re-
quest is delegated to the back end analysis tool API, which finally performs 
the analysis task and returns the results. Those results are stored in the 
SDM and the Front End Communication component notifies the FEL through 
its Safety Analysis Service Provider interface that the results or possibly oc-
curred errors are available. 
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Figure 5 Model Transformation Layer Interaction Structure 



23 

3.5 Analysis Back End Integration Challenges 

As shown in Figure 1 in section 3.2, there is a variety on safety analysis tools 
available on the market. In order to understand the differences in the API 
usage of those tools as well as some typical problems, this section com-
pares the characteristics of the APIs which had already been connected to 
the MTL before this thesis: the IESE Analysis Back End and FaultTree+.  

The most important property of an API is the platform on which it is deployed 
by its vendor. This has implications on the communication between the MTL 
and the API. The problems that need to be tackled in this context are: 

• Effort for communication implementation 

The IESE API and the MTL are both deployed for the Java Platform. This 
highly facilitates the integration of this analysis back end, because com-
munication across binaries is easy in Java. On the other hand, the Fault-
Tree+ API is deployed as a dynamic link library (DLL), so extra effort has 
to be put in the communication between Java and DLLs. 

• Error Handling problems 

Especially, when asynchronous analysis requests are sent across plat-
forms, error handling is aggravated on the MTL side. Reasons for that 
can be for example: a poor documentation of the analysis tool API; the 
errors are not propagated properly to the service consumer across plat-
forms or they are not signaled at all and end up in an application crash. 

Apart from platform issues, the back end tools’ APIs differ greatly in usage 
comfort. This depends primarily on the degree of affinity between the SDM 
and the meta-model of the specific back end analysis tool. Because of the 
fact that the IESE analysis back end was developed for the SDM by design, 
it is able to directly receive failure models from the SDM and analyze them. 
In contrast, the FaultTree+ API has to be called once for each model ele-
ment’s transmission, which makes the parallelization of analysis tasks diffi-
cult and decreases performance because of the communication overhead. 
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4 System Documentation 

With the layered system architecture described in section 3 as foundation, 
this section deals with the documentation of the developed prototype’s im-
plementation accomplished in the course of this thesis. The chosen tools to 
be connected to the model transformation layer are the front end modeling 
tool Enterprise Architect and the IESE implementation and FaultTree+ as 
analysis back ends for performing FTA. 

4.1 Model Transformation Layer 

This section presents the current development stage of the safety develop-
ment model including its failure meta-models, the applied abstract concepts 
and its support for analysis. Subsequently, the design of the model transfor-
mation layer is documented including some development hints for important 
tasks. 

4.1.1 Safety Development Model 

As mentioned in section 3.4.2, the architecture’s key component is a safety 
exchange format that is able to handle multiple safety analysis techniques, 
even mixed in the same failure model, as well as multiple safety analysis 
back end tools. These requirements have been satisfied in the course of this 
thesis by improving the previously implemented Safe Component Model 
(SCM), which was proposed in [11]. The resulting integrated meta-model is 
called Safety Development Model (SDM) and is this section’s topic. Section 
254.1.1.1 describes the abstract concepts and failure meta-models that have 
been integrated into the SDM by now. Section 4.1.1.2 explains those parts of 
the SDM that have relevance, when failure models should be parameterized 
and analyzed. Finally, section 4.1.1.3 gives development hints that include 
the used principles for extending the SDM. The current development stage 
of the SDM implementation is shown in Figure 6. 

4.1.1.1 Failure Meta-Models and Abstract Concepts 

The meta-models of the SCM that were affected by improvements were 
namely the generic component model (GCM) and the component fault tree 
model (CFT). Furthermore, four new meta-models were added: the safety 
aspect component model, the failure propagation model (FPM), the structur-
al propagation model (SPM) and the abstract connection model. 
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Figure 6 Safety Development Model (SDM) Implementation 

• Failure Propagation Model  

Because of the fact that a “Failure View has been defined to aggregate the 
commonalities of all integrated kinds of fault trees” ( [11] : 69), the notion of a 
failure view has to be re-thought when multiple safety analysis techniques 
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should be taken into consideration, because SPES_XT requires an abstrac-
tion from specific failure meta-models like CFTs. 

Thus, the FPM has been introduced, which represents this abstraction and is 
shown by the green colored stereotypes in Figure 6. It offers the possibility to 
associate component models with failure models, independent of specific 
techniques. In order to achieve this independence, the stereotype Fail-
urePropagationModel only exposes the failure model’s input and output fail-
ure modes, which all specific failure model stereotypes like FaultTree, Com-
ponentFaultTree or SPComponent get by inheriting from it. Thus, the ports of 
a component can be associated to interface failure modes without the 
knowledge of the used technique inside the failure model.  

• Safety Aspect Component Model 

The GCM proposed in [11] doesn’t support an instantiation concept for com-
ponents. As a consequence, reuse is prohibited in two different ways: On the 
one hand, without instantiation it’s not possible to model more occurrences 
of one component as part of another component. This is for example needed 
in a technical system using two identical power units for redundancy. On the 
other hand, the instantiation concept allows the development of more gen-
eral and powerful components, when their instances are allowed to reuse 
only subsets of the provided ports of the component. In order to keep con-
sistency between components and their instances after changes or addi-
tions, synchronization mechanisms have to be implemented in both direc-
tions.  

The resulting overall model in terms of SDM is called Safety Aspect Compo-
nent Model, which includes an instantiation concept as well as the associa-
tion of the component with an abstract failure model and the component’s 
ports with abstract interface failure modes. Note that the current implementa-
tion of SDM does not include component integration due to the fact, that no 
analysis operations exist by now that are able to take advantage of the as-
sociations between components and failure models. 

• Abstract Connection Model 

The third concept that has been abstracted from in the SDM implementation 
is the connectivity of model elements shown by the purple colored stereo-
types in Figure 6. The idea behind it is that each model element like Gate, 
BasicEvent or InputFailureMode is restricted by its theory concerning its 
connectivity. A failure model element can be connected in three ways: Either 
it has only incoming connections, meaning it’s a Parent, or it has only output 
connections, meaning it’s a Child, or it has both types of connections, then it 
is called a ConnectableElement. These restrictions can be applied for the 
according stereotypes by extending the respective abstract class. Note that 
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the stereotype AbstractConnection is only once extended, namely from ste-
reotype Connection in FPM. 

• Structural Propagation Model 

As mentioned in section 3.1, SPES_XT also requires the possibility to model 
heterogeneous failure models that use different techniques both horizontally 
(at the same hierarchy level) and vertically (at different hierarchy levels), 
thus a mechanism has to be provided that allows the modeling of failure 
propagation through instances of failure models that are modeled with differ-
ent techniques. This approach paves the way for performing safety analysis 
for whole systems regardless of the used techniques to analyze the associ-
ated components. An example for the need of the mentioned heterogeneity 
can be seen in the industry, when different suppliers of system components 
use different techniques, but the OEM has to prove safety for the integrated 
system, though. 

The introduction of the SPM, whose contents are shown with the brown col-
ored stereotypes in Figure 6, solves this issue with the creation of stereotype 
SPComponent which extends stereotype FailurePropagationModel, so it can 
be mapped to a component like all other failure meta-models, too. In addi-
tion, it can own FailureModelInstances that have failure inports and outports. 
Note that failure inports and outports are instances of the respective inter-
face failure modes from the instantiated failure model. The benefit of this dis-
tinction is again the use of different interface failure mode subsets in different 
contexts.  

Since the SPM encapsulates the instantiation concept for failure models, it 
can be reused in other failure meta-models. This is for example implemented 
in the SDM for CFTs. For this reason, in Figure 6, stereotype Compo-
nentFaultTree inherits from stereotype SPComponent and stereotype Sub-
CFT inherits from stereotype FailureModelInstance. 

• CFT and FT Models 

The SDM implementation for FTs and CFTs is shown in Figure 6 with the 
white colored stereotypes.  

Only the specific elements BasicEvent, Gate and GateType for FaultTree 
and SubCFT for ComponentFaultTree had to be modeled, because Compo-
nentFaultTree extends FaultTree and therefore inherits all FT model ele-
ments. It’s important to note that all other concepts like interface abstraction, 
instantiation and connectivity restrictions could be integrated by only extend-
ing the respective abstract classes FailurePropagationModel, SPComponent 
and Child, Parent or ConnectableElement. This highly facilitates the integra-
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tion of new failure meta-models into the SDM in the future, because the ap-
plied concepts are already available in an encapsulated way. 

4.1.1.2 Analysis Support 

The SDM parts that have been described in the preceding section included 
abstract concepts required by SPES_XT and the actual failure meta-models 
for CFTs and FTs. This section deals with the SDM parts that are necessary 
for the support of different safety analysis operations and analysis back end 
tools, namely the parameterization of failure models, the consideration of 
back end tool specific properties and the representation of analysis results. 

• Model Parameterization 

The concept for the parameterization of any failure model element is demon-
strated in Figure 6 by the blue colored stereotypes. When an arbitrary model 
element should be parameterized it has at least to extend the most general 
stereotype AnalysisElement. An AnalysisElement is currently capable of hav-
ing a parameter model for both IESE back end (IeseFailureModel) and 
FaultTree+ back end (FaultTreePlusFailureModel). A parameter model is de-
fined by a failure distribution. Figure 6 shows ExponentialRate, Uniform and 
Constant distributions for IESE back end, but only Fixed distribution for 
FaultTree+ back end, although all FaultTree+ failure distributions are sup-
ported.  

Note that normally, failure distributions are only assigned to basic failure 
modes in FTA, but in theory, they could be assigned to any element extend-
ing AnalysisElement, e.g. FaultTree. This issue is an example of the fact that 
the SDM is designed for being flexible concerning parameterization. The 
price for this flexibility has to be paid by the MTL developers, who have to 
take care that such parameterizations like in the example don’t happen. 

The introduced abstract classes FailureMode as well as its subclasses 
FTFailureMode, CFTFailureMode and SPFailureMode don’t have a specific 
responsibility at the current stage of development, but they were included 
with respect to the possible need in the future to distinguish between the el-
ements of different failure meta-models. 

• Back End Tool Specific Properties 

Before a parameterized SDM failure model can be handled to a back end 
tool for analysis execution, it has to be packaged together with attributes that 
describe back end tool specific issues. Such a package is represented in 
Figure 6 by the abstract stereotype AnalysisInfo, which is colored in red. The 
stereotype for a specific analysis operation with a specific back end tool has 
to be extended from AnalysisInfo. 
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This has been done for the analysis with FaultTree+, including some param-
eters to enable the connection to the FaultTree+ application (programDir at-
tribute) and its API DLL (dllPath attribute) as well as the attributes unavaila-
bility, failureFrequency, primeImplicants and resultHash, which are typed da-
ta structures that include the results after the analysis execution. 

The classes PrimeImplicantsCalculationInfo and SemiQuantitativeAnaly-
sisInfo represent the supported analysis operations for the IESE back end. 
Note that quantitative analysis is also supported, but that is equal to a semi-
quantitative analysis, where all basic failure modes have a constant failure 
distribution.  

Concerning FTA, the elements, for which quantitative and qualitative analy-
sis can be performed, are output failure modes and gates. The attribute re-
sultHash has a special responsibility for all AnalysisInfo extensions, because 
it maps analysis results to output failure modes and gates, which both are 
extended from FailureMode, so resultHash attribute’s type 
Map<FailureMode, AnalysisResult> is again an example for the flexibility of 
SDM. 

• Analysis Result Representation 

As described above, analysis results are mapped to output failure modes 
and gates within SDM. The stereotype representing the result of a specific 
analysis operation is AnalysisResult. All yellow colored elements in Figure 6 
are related to the representation of analysis results. Analogous to Analy-
sisInfo, AnalysisResult has to be extended for each analysis operation. The 
extended class is responsible for the storage of the operation specific re-
sults, which are finally read by the MTL’s front end adapters and sent to the 
front end application’s for the presentation to the user.  

4.1.1.3 Development Hints 

This section describes the process for adding a new analysis technique to 
the SDM as well as the integration of a new analysis operation for an analy-
sis back end tool. 

• Adding a new analysis technique to the SDM 

1. Create an EMF ECore Model in Eclipse for the new technique 

2. Model stereotypes for the specific elements for the technique (like the 
white stereotypes in Figure 6) and make sure that the stereotype rep-
resenting the technique like FaultTree extends stereotype Fail-
urePropgationModel. 
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3. Define the connectivity for each stereotype that is able to be con-
nected like BasicEvent or Gate. This is done by extending from Child, 
Parent or ConnectableElement stereotypes (purple stereotypes in 
Figure 6). 

4. If the new technique should support instantiation as it’s the case with 
CFTs, add a stereotype with name Sub<TechniqueName> extending 
stereotype FailureModelInstance from SPM and make sure that the 
technique stereotype like ComponentFaultTree also extends 
SPComponent. 

• Adding a new analysis operation to the SDM 

1. Extend AnalysisElement with a stereotype for the back end tool (like 
IESEFailureModel) which serves as base stereotype for all parameter 
sets that are needed for this back end tool (see blue colored stereo-
types in Figure 6). In FTA, these are the failure distributions for the 
basic failure modes. 

2. Extend AnalysisResult for the new analysis operation and include at-
tributes for each result value 

3. Extend AnalysisInfo for the new analysis operation and create at 
least a resultHash attribute that has the type Map<FailureMode, 
AnalysisResultSpecialization>, while AnalysisResultSpecialization is 
the stereotype defined in 2.  

4. Generate Java classes from the EMF ECore Model and use them in 
the MTL development as it will be described in section 4.1.2. 

4.1.2 MTL Design Documentation 

This section first gives some general information of the MTL implementation 
structure. Section 4.1.2.1 explains the design decisions that have been taken 
during the MTL development process. Section 4.1.2.2 provides a step-by-
step list of how the MTL is extended and finally, section 4.1.2.3 presents an 
example that shows which MTL implementation units are in action at what 
time during semi-quantitative analysis of a CFT 

Due to the fact that the implemented prototype in this thesis only deals with 
two analysis back ends and FTA as analysis technique, the rather generic 
structure for the MTL presented in section 3.4.2 could be concretized con-
siderably. A major influence on the concretized MTL structure has been the 
existing front end implementation for MagicDraw as well as the implementa-
tion of the IESE analysis back end. Although both implementations were 
aimed to match the Safe Component Model (SCM) proposed in [11], the 
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overall structure could be reused. In order to be able to join the EA adapter 
consistently with the existing MagicDraw adapter, the actual MTL implemen-
tation presented in this section has a structural difference to the proposed 
MTL structure from section 3.4.2, namely that the packages in the MTL are 
not separated by front end adapter, safety exchange format and back end 
adapter, but rather by the analysis techniques. 

The resulting implementation structure is visualized by means of a UML 
package diagram in Figure 7. The packages colored in blue represent pack-
ages that were already implemented at the start of this thesis. The reflection 
of the model change from SCM to SDM in those packages was implemented 
by some colleagues from Fraunhofer IESE. All used arrows in the diagram 
are UML usage relations and when package names are addressed in this 
section, the prefix “de.fhg.iese” is left out because of the fact that all MTL 
implementation packages reside in “de.fhg.iese” package. 

 

 

Figure 7 MTL Implementation Structure for FTA with EA 
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4.1.2.1 Design Decisions 

By virtue of each analysis technique being encapsulated in a separate pack-
age and that it should be possible to deploy the back end with different sets 
of techniques, the package ea.backend has been created. Its purpose is to 
provide the main class for starting the analysis server and specifying the 
techniques that should be included. 

• Client-Server Communication Library 

The so-called server modules for each technique are stored in a separate 
class like FTServerModules. They are part of the communication library 
ea.algorithmServer which allows comfortable TCP message exchange be-
tween .NET and Java. The library’s characteristic feature is that messages 
can be exchanged between named modules that additionally specify the be-
havior for the reaction to an incoming data message in the run(AsMessage 
msg) method of the class AsModule. The usage is comfortable, because the 
return value of the run method is automatically sent to the matching module 
in .NET. Note that a pair of modules, one in .NET and one in Java, is identi-
fied as one communication channel, if they have the identical identifier string 
on both sides. 

An incoming analysis request from the FEL includes a XML serialization of 
the failure model, which should be analyzed. The information, which analysis 
operation should be performed with which analysis back end, is encoded in 
the server modules themselves, e.g. when prime implicants should be calcu-
lated for CFTs with FaultTree+, the analysis request is triggered inside the 
.NET module named “cft_primeimplicants_ft+_mod” and the message auto-
matically arrives in the matching Java module with the same name as pa-
rameter. 

• dom4j XML Library 

The included XML serialization of the failure model needs to be parsed, for 
which the library dom4j [17] has been made use of, because the native 
mechanisms for parsing XML in Java are not very comfortable. dom4j also 
provides mechanisms to use the XPath language [18], which allows efficient 
navigation through XML documents in an intuitive way and therefore is an 
advantage in terms of code readability and code maintenance. There is 
made extensive use of this feature in the failure model transformers which 
are also described in this section. 

• Concurrency in MTL 

Each analysis operation is encapsulated in a class like CalculatePrimeImpli-
cants in ea.ft.analysis.iese package, which inherits from java.lang.Thread, 
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because this paves the way for parallel execution of several analysis opera-
tions in the long run. One could imagine this scenario in a distributed envi-
ronment where the IESE algorithm server assembly is provided on a remote 
server for simultaneous usage of several customers. 

In order to synchronize the main thread with the analysis operation thread at 
the analysis end, the class LinkedBlockingQueue from java.util.concurrent 
package has been used. One can put function calls in the queue, which au-
tomatically executes them and puts their return values in the queue, when 
the function has finished executing. The key concept is that LinkedBlock-
ingQueue.take() function suspends the calling thread as long as no return 
value is available.  

• Failure Model Transformation 

The transformation of failure models delivered from the front end into its 
SDM representation is implemented in the transformer packages. As men-
tioned in section 3.4.2, the SDM is implemented by means of the EMF 
framework, which builds usable java packages from the declaratively created 
models. The package for the SDM implementation is sdm.model, whose 
classes are accessed by the failure model transformers extensively. During 
the transformation, hash maps are created for a mapping between identical 
model elements in both representations, which increases the transformation 
efficiency, because each model element is only transformed once. This is 
useful because of the fact that multiple instantiation of failure models in dif-
ferent hierarchy levels is possible and would otherwise lead to redundancy. 
The mapping keys are EMF objects representing the SDM elements which 
are mapped to “Globally Unique Identifiers” (GUID) [19] assigned to model 
elements in EA. Note that GUIDs are the used mechanism in EA for uniquely 
identifying model elements.  

• Back End Adapters 

As depicted in Figure 7, the analysis operation classes can make use of the 
back end adapter packages, which are ft.analysis.faulttreeplus and 
ft.analysis.iese in the developed prototype. They provide classes for each 
analysis operation and encapsulate the behavior for the analysis with a spe-
cific back end tool. In addition, their interfaces are similar, which makes their 
usage straightforward for developers.  

The back end adapter packages themselves make use of the 
ft.transformation package. It provides the functionality to perform internal 
model transformations within the SDM, e.g. a flattening of CFTs to FTs or a 
reduction of CFTs. In addition, it performs semantic and syntactic model val-
idations during transformation like Boolean loop detection. Above all, the flat-
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tening is important with respect to FTA, because the analysis back ends only 
support analysis for flat fault trees. 

4.1.2.2 Development Hints 

The development tasks concerning the MTL, which are likely to be of interest 
in the future, are presented in the following as step-by-step recipes. This in-
cludes the addition of a new analysis technique as well as a new analysis 
operation for an existing technique. 

• Adding a new analysis technique 

1. Create a package for the analysis technique like ea.ft.analysis 

2. Create package transformer in it and implement the transfor-
mation class for the failure meta-model transformation from its 
serialization to the SDM model 

3. Create package communication with a <FailureMod-
el>ServerModules class, which will consist of the communication 
modules. Subsequently, register this class in ServerMain class 
inside package ea.backend in order to make the created modules 
accessible in the deployed assembly. 

4.  Start adding analysis operations 

• Adding a new safety analysis operation for an existing technique 

1. Create a new class for the analysis operation under the respec-
tive analysis back end package, for which this operation should 
be available like CalculatePrimeImplicants in ea.ft.analysis.iese 
package 

2. Create a new AsModule instance in communication package of 
the respective analysis technique and make use of the class cre-
ated in 1. 

4.1.2.3 CFT Analysis Example 

In order to provide a continuous example, which visualizes the mapping be-
tween the implementation units and the tasks they accomplish, the semi-
quantitative analysis use case with CFTs has been chosen. In Figure 8 that 
part of the execution taking place in the MTL is shown, while its execution in 
the FEL will be covered in section 4.2.2.4. 



 

36 

 

analysis request
received parse message

to XML datastructure
with dom4j library

CFT XML
representation/

SQ params

create empty 
SDM CFT

transform FT elements
(output failure modes, 
basic events, gates)

transform CFTs 
child instances‘
failure models 

recursively

transform connections,
input failure modes

[Transform
Error] 

SDM CFT
create SDM 

SQ-AnalysisInfo 
for IESE back end

flatten SDM CFT
 to SDM FT

FT reduction

semantic model
validation

perform SQ-Analysis
on flat FT

encode results
to XML

SQ 
analysis results

send response
to FEL

create 
response message

1

1

encode errors
to XML

[Transform
Error] 

[Transform
Error] 

choose 
SQ analysis

 module

ea.algorithmServer

ea.cft.analysis . transform
er ::

C
om

ponentFaultTreeG
eneratorft .

tra
ns

fo
rm

at
io

n
ft.

an
al

ys
is

.ie
se

[Validation
Error] 

ea.cft.analysis.communication::
CFTServerModules

1

1

1

cft.analysis.iese::
SemiQuantitativeAnalysis

 

Figure 8 CFT Semi-quantitative Analysis Example in MTL 

Initially, analysis request is received by the server module for semi-
quantitative analysis with the IESE back end. After the message has been 
parsed, the CFT XML representation is transformed step by step into the 
SDM representation. If any error occurs during the transformation, it is 
stopped and the error is propagated back to the FEL, where the user is noti-
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fied of it. Otherwise, the SDM SemiQuantitativeAnalysisInfo is prepared. 
Subsequently, the SDM CFT representation is flattened to a FT and validat-
ed semantically. If the validation succeeds, the FT is analyzed by the IESE 
back end algorithm for semi-quantitative analysis. Its results are encoded to 
XML and packaged in a message that is sent back to the FEL by the provid-
ed communication library. 

4.2 Enterprise Architect Front End 

This section starts with a description of the EA tool architecture and subse-
quently describes the FEL’s implementation for EA. This includes the devel-
oper documentation for both the EA UML profiles that have been created ac-
cording to the meta-models from the SDM and the add-in that incorporates 
the additional functionality used for enriching the capabilities of the EA pro-
files. 

In order to develop extensions for EA, one has to be familiar with its internal, 
layered architecture, which is shown in Figure 9. 

        

Figure 9 Enterprise Architect Tool Architecture  

The key component of this architecture is the EA Data Model, which can be 
accessed by two mechanisms:  

On the one hand, the model can be extended in a declarative way by Model 
Driven Generation (MDG) technologies, which are EA means to implement 
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UML profiles. In addition, several other artifacts like diagram types and their 
toolboxes or user help pages can be incorporated into a MDG technology. 
On the other hand, one can make use of so-called add-ins, which offer pro-
grammatical access to the EA Data Model through the Automation Interface. 
The add-ins have to be written in the .NET platform and are used for enrich-
ing MDG technologies with additional functionality. 

The EA Data Model is typically stored in EA project (eap) files. They are 
based on the Microsoft Jet 4.0 database engine and because of that, they 
are equal to the MS Access ’97 mdb format [20]. 

Note that many of the EA-specific issues and terms described in this section 
are described in more detail in [21]. In addition, there exist two extremely 
useful e-books which originated from the EA user community and give ad-
vanced information about the development of EA extensions [22] and the in-
ternal structure of the EA Data Model [23].  

4.2.1 UML Profiles in EA 

4.2.1.1 MDG Technology Creation 

This section shows the typical process of the MDG technology creation. In 
order to visualize the artifacts created during this process, the central model 
of the SPES modeling approach is used, namely the component model. The 
steps for creating a new MDG technology are: 

1. UML Profile Definition 

2. Toolbox Profile Definition 

3. Diagram Profile Definition 

The first step in the process is the definition of a UML profile in EA. In gen-
eral, profiles are UML’s extension mechanism for expressing domain-specific 
meta-models. A profile is defined by creating new stereotypes, constraints 
and tagged values for UML meta-classes. The EA component model profile 
is shown in Figure 10.  

• Meta-classes and tagged values 

In EA, meta-class elements have the stereotype <<metaclass>> and stereo-
type elements are marked with the «» image next to the element name. Both 
of them are modeled as classes within EA. Connections with black-filled ar-
rowhead symbolize meta-class extension, while connections with white-filled 
arrowhead symbolize stereotype extension.  
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Tagged values can be modeled by one of two mechanisms, either as class 
attributes in a stereotype or as UML uni-directional associations between 
stereotypes. It proved best to use the association mechanism for tagged val-
ues referencing other stereotypes, while tagged values of simple types like 
integer are defined as attribute. Note that tagged values can only be inherit-
ed from stereotypes which extend a meta-class. 

• Special EA attributes 

There exist some special attributes for meta-classes and stereotypes in EA, 
whose names have to start with an underscore. These are are used for de-
fining the appearance of stereotypes in diagrams (_image, sizeX, sizeY, 
_lineStyle) and rules how EA treats stereotype elements internally 
(_defaultDiagramType, _metatype, _instanceMode, _instanceType). The 
most powerful of them is the _image-attribute, because it allows defining an 
arbitrary stereotype appearance through a XML-structure with the use of a 
simple scripting language called ShapeScript. Examples for shape-scripted 

                          

Figure 10 EA Component Model Profile 
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appearance are given in Figure 11 for the stereotypes Inport and Outport. 
Note that MDG technologies can also include images that are accessible 
from shape scripts. Another important attribute is the _defaultDiagramType-
attribute, because it defines the name of custom diagram type in the form 
<DiagramProfileName>::<DiagramStereotypeName>, which is automatically 
created and attached to the stereotype, when it’s dragged from a toolbox.  

• Diagram Types 

The second step in the MDG technology creation is the definition of custom 
diagram types. They are modeled in EA by diagram profiles and toolbox pro-
files, where from special meta-classes and attributes can be made use of. 
This is shown exemplarily for the component internal structure diagram in 
Figure 11. Normally, diagram and toolbox profiles have to be modeled in 
separate diagrams, but for space issues, they are shown in one image. 

A toolbox profile consists of at least one toolbox page specifying attributes 
for each stereotype that should be available for modeling. By specifying a 
stereotype extending the meta-class ToolBoxItemImage, custom images can 
be used to further describe the stereotype’s intentional purpose directly in 
the toolbox.  

Diagram profiles usually consist of only one stereotype (Component Internal 
Structure) extending an EA-specific meta-class representing an UML dia-
gram (Diagram_CompositeStructure). This is in most cases the UML com-
ponent structure diagram in this thesis, because it serves best for modeling 
architectural structures due to its built-in support for hierarchies and modu-
larization, which are of main interest in the SPES_XT meta-models. The 
most important attribute of each meta-class Diagram_<UMLDiagram> is 
toolbox, whose value is the name of that EA-diagram, where the toolbox pro-
file is defined in, in Figure 11 its value is “InternalView”. 

The creation of profile packages is facilitated by the usage of a wizard so-
called “Profile Helpers”, which provides dialogs that simplify the creation of 
stereotypes, toolboxes and diagrams by listing all possible stereotype attrib-
utes including the EA-specific ones and their possible values. 

Finally, the MDG technology has to be put together. During this task, all rele-
vant profiles, diagrams and toolboxes and optionally other resources (see 
[21] for more details) are compiled into a single XML file, which can be im-
ported manually in other EA installations or, as it is done within this thesis, 
directly embedded into an EA add-in. 
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Figure 11 Custom Diagram Type in EA 

4.2.1.2 C²FT EA Profiles 

The safety analysis technique considered for this thesis is fault tree analysis. 
In order to support the modeling of FTs, CFTs and C²FTs, three profiles had 
to be developed. In addition, a profile has been created for SPM. This won’t 
be covered in this section, because the used EA-related concepts are similar 
to the other profiles. For the interested reader, the SPM profile can be found 
in Figure 23 in appendix section 6.1. 

The EA component model profile, which has already been shown during the 
description of MDG creation, was created according to the safety aspect 
component meta-model described in section 4.1.1. Some of the modeled 
tagged values are actually superfluous and modeled only for understandabil-
ity, because they are accessible through EA’s automation interface by de-
fault. These include ComponentInstance::type and PortConnec-
tion::source/target. Note that the tagged value Component::instances stores 
references to the instances of other components, that it’s owning and not to 
its own instances. 

Although the UML provides default support for instantiation through the 
meta-classes InstanceSpecification and Property, this was not practicable in 
the component profile, because of the fact, that an interactive navigability 
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through the component model is required and both of them are not 
composite, i.e. they aren’t containers for further elements. In contrast, the 
EA-representation of the  meta-class Component provides the needed 
functionality by its _makeComposite-attribute and it has therefore been 
chosen for both stereotypes Component and ComponentInstance.  

The second created EA profile is that for the CFT meta-model, which is pre-
sented in Figure 12. It supports modeling of both FTs and CFTs.  

 

Figure 12 EA CFT Profile 
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type inherits from FT stereotype and adds instantiation capabilities to it, i.e. 
CFT stereotypes are capable of owning instances of other CFTs, while FTs 
are not. The CFT part of the profile is similar to the EA component profile. 
Note that both stereotypes CFT and FT extend the meta-class Component 
with one difference: The _defaultDiagramType-attribute stores references to 
a different custom diagram in each case, which goes back to the different 
sets of elements provided in each toolbox (see Figure 21 in appendix for all 
other created toolboxes). 

Stereotypes FT and CFT inherit from FailurePropagationModel stereotype, 
which is defined in the “Failure Propagation Model” profile shown in Figure 
22 in the appendix. This profile has been created to automatically supply 
every new added meta-model of a safety analysis technique with interface 
failure modes and the ability to map functional ports to them, just by extend-
ing from FailurePropagationModel stereotype. In addition, the mapping be-
tween component and failure model is also formalized by this extension.  

Note that the failure propagation model is designed to keep flexibility for the 
specific failure models as much as possible. The idea behind is to provide 
concepts for them like the ability to have interface failure modes, but they 
aren’t forced to use them. An example for this issue can be seen with FTs. 
They are restricted by the fault tree theory, which defines that fault trees are 
only allowed to have basic events and output failure modes. This restriction 
is reflected in the toolbox definition for the FT-Diagram, where the stereotype 
InputFailureMode is not provided. 

4.2.1.3 Back End Analysis Profiles 

So far, the defined profiles provide the ability to create models of FTs, CFTs, 
C²FTs and SPM, but an additional requirement is to perform some kind of 
analysis on these models. Depending on the sort of analysis, some of the 
modeled elements require being parameterized. This section deals with the 
profiles that provide the mechanisms to assign parameters to model ele-
ments. 

In order to provide parameterization for stereotypes considering different 
safety analysis operations and different analysis back end tools, separate 
profiles for each tool have been provided. The drivers for separating model-
ing profiles from analysis profiles have been: 

Support of multiple parameterizations for one stereotype by multiple inher-
itance 

This means that a stereotype like CFTProfile::BasicEvent is not parame-
terized by default. Instead, it can inherit from all according back end tool 
parameterization stereotypes to apply their parameterizations. These 
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are obviously those for basic failure modes, IESEBasicFailureMode 
shown in Figure 13 and FT+BasicFailuremode shown in the FaultTree+ 
analysis profile in Figure 24 in appendix. 

             

Figure 13 EA IESE Analysis Profile 
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tionally cohesive is presented at once. Applied to profiles, this means 
that it would be hard to identify all analysis related contents, if the pro-
files were mixed up. Furthermore, the stereotypes of the failure meta-
model that are used for modeling like BasicEvent or Gate from CFTPro-
file don’t need to be changed directly, when for example new failure dis-
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tributions are added to the analysis profile. Instead, they receive the ad-
ditional distributions automatically just by the existing inheritance. 

Modeling profiles should be able to be deployed without analysis capabilities 

Possibly, the tool will be used in some contexts only for the creation of 
failure models. Thus, the separation of analysis profiles from modeling 
profiles minimizes the effort for removing analysis capabilities from 
modeling elements, namely just the extension relations need to be re-
moved. 

Exemplarily, the analysis profile for the IESE analysis back end is shown in 
Figure 13 (see Figure 24 in appendix for FaultTree+ analysis profile). It is 
capable of parameterizing the basic failure modes of CFTs and FTs with the 
failure distributions IESERate, which is a exponential distribution, Uniform, 
which is a uniform distribution and Constant, which represents a constant 
failure probability. The parameterization is accomplished by inheriting from 
the respective analysis stereotype owning the parameters as tagged values. 
For example, BasicEvent from CFTProfile gets a failure distribution parame-
ter by inheriting from IESEBasicFailureMode. Note that IESEAnalysisTarget 
also has tagged values for the storage of results of different safety analysis 
tasks. 

4.2.2 EA C²FT Add-In 

This section presents the approach for extending Enterprise Architect pro-
grammatically as well as the concrete contents of the developed add-in for 
C²FTs. In addition, it explains the design decisions that need to be under-
stood, when the add-in should be maintained or extended. 

4.2.2.1 General EA Add-In Approach 

The EA Automation Interface, which has already been shown in Figure 9 in 
section 4.2, consists of an object model (see Figure 25 in appendix) that al-
lows programmatical access to the EA Data Model and the registration for 
EA events such as user interaction with the modeling tool or model changes. 
This is realized by implementing a so-called add-in for the .NET framework, 
i.e. a dynamic linked library (DLL) has to be created that references the EA 
Automation Interface, which is shipped with EA as a DLL called “Inter-
op.EA.dll”. In order to be automatically detected by the EA application, two 
tasks have to be accomplished: 

1. Add a registry key to the Windows Registry under the registry path 
HKEY_CURRENT_USER/Software/Sparx Systems/EAAddins with 
name <AssemblyName> and value <AssemblyName>. <MainClass-
NamepaceName>.<MainClassName>. 
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2. Register the add-in assembly to the .NET framework’s global assem-
bly list by invoking the command  

<RegAsmPath>/RegAsm.exe <AssemblyPath>/<AssemblyName> /codebase 

on the command line1. 

The specified main class in step one has a special responsibility: Callbacks 
for EA events have to be defined there. They represent the complete interac-
tion interface for the communication between the EA application and the 
add-in and can be separated in the following categories: 

MDG Events allow it for example to embed MDG technologies directly into 
the DLL, which is the chosen approach in the C²FT add-in.  

• Add-In Events notify the add-in for example when custom menu items of 
the add-in are clicked or when the EA application is closed.  

• Context Item Broadcast Events notify the add-in when the user changes 
or double-clicks the selected item.  

• Pre Creation and Post Creation Broadcast Events notify the add-in be-
fore and after an element is created.  

• Pre Deletion Broadcast Events notify the add-in before an element is de-
leted. 

All events have in common that the notification includes context information 
by means of the callback parameters so that the add-in can react appropri-
ately to the events. The passed parameters have almost in all cases types, 
which are defined in the object model.  

The object model’s central class representing the main entrance point to the 
“EA Data Model” is Repository. It provides properties and methods that allow 
the navigation through the model as well as the creation, deletion and altera-
tion of model elements and diagrams. Model elements like stereotypes de-
fined in profiles are represented by the class Element and can only be creat-
ed inside packages (class Package). Element has some collections as prop-
erties, which implement the Collection-Interface. These are collections for 

                                    

1 RegAsm.exe isdeployed with the .NET framework and can usually be found under <WindowsDirecto-
ry>\Microsoft.NET\Framework\<FrameworkVersion>\RegAsm.exe 
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the associated tagged values and the elements that are owned by the parent 
element within the element hierarchy. Note that there are two collections for 
representing owned elements, namely Element.Elements and Ele-
ment.EmbeddedElements. EAs documentation doesn’t explain their differ-
ence clearly, but a test showed that Element.EmbeddedElements stores the 
same elements as Element.Elements plus all owned ports. Packages can 
contain other packages as well as diagrams (class Diagram). Connectors 
may also be stereotyped elements, but they have their own representing 
class Connector.  

The object model also reflects the distinction between the actual model ele-
ments (classes Element and Connector) and their representation in dia-
grams (classes DiagramObject and DiagramLink, respectively). 

4.2.2.2 C²FT Add-in Design 

The structure of the developed EA add-in for C²FTs is presented by means 
of a package diagram in Figure 14, where the majority of elements from the 
FEL architecture proposed in section 3.3.2 re-emerge. Thus, the explanation 
of the individual classes’ responsibilities are either clear by their names or 
can be taken from the general explanations from the functional decomposi-
tion in section 3.3.2, where examples for these responsibilities are provided, 
too. 

The remainder of the section describes the most important issues of the 
C²FT add-in design that Figure 14 doesn’t show. These are namely the ra-
tionale for the used programming paradigm, the supposed technique for ex-
tending profiles in the add-in, the used UI dialogs and how common behavior 
is treated in the add-in. 

• Used programming paradigm 

EA add-ins are supposed to only consist of behavior that reacts to events, 
which has two causes: Firstly, the “EA Data Model”, which contains the 
whole information about the models from a currently opened .eap file 
(=model state), is stored internally in the EA application with a limited access 
through the EA API. Secondly, the broadcast events that notify add-ins of 
changes to the model state provide references to the relevant elements of 
the “EA Data Model” through their parameters. 

As a consequence, there is no need to store the model state in the add-in 
implying that the add-in consequently hasn’t any real program state at all. 
Thus, a rather functional approach has been chosen for the add-in develop-
ment, i.e. the classes shown in Figure 14 contain mostly functionally related 
static methods rather than being actual classes in the sense of object orien-
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tation (OO). Even though, it is possible to use OO mechanisms like inher-
itance to abstract from common functional behavior. 

• Extending declarative profiles in the add-in 

As mentioned in section 4.2.1, MDG technologies containing the declarative 
profile and diagram definitions can be embedded into the add-in assembly 
as so-called resources. They can be loaded into the EA application with the 
add-in event EA_OnInitializeTechnologies(). Note that after each technology 
change the add-in has to be re-built in order to reflect the changes. 

  

Figure 14 EA C²FT Add-In Structure 

In order to extend a declarative profile in an add-in, there has been created 
one class for each profile. The motivation for this has been the fact that the 
names of the defined tagged values and stereotypes proved best to be en-
capsulated in constant variables to make them better maintainable. The pro-
file classes implement the profile specific behavior that cannot be expressed 
directly by functions from the APIFaçade namespace. This namespace rep-



49 

resents a function repository containing profile-independent behavior for 
modification and retrieval of both model elements and their diagram repre-
sentations. Examples are synchronization functions for ports between in-
stances and their components or the layout of diagram elements. Note that 
the profile classes are supposed to make as much use of the APIFaçade 
namespace as possible to minimize code duplication and keep the mainte-
nance and optimization scope small. 

• Namespace AddIn 

This namespace is of special interest, because it incorporates the main class 
Main which consists of the callbacks that react to the EA broadcast events. 
While the class C2FT_MenuHandler defines the hierarchy of the custom 
menu that is available for the user in the EA application, the class 
C2FT_MenuItems incorporates the callbacks for the broadcast event 
EA_MenuClick for all custom menu commands. Because of the facts that 
Main already contains a lot of callbacks and that the custom menu logic is a 
responsibility on its own, it has been decided to outsource this logic into 
separate classes. 

• Used UI dialogs 

The namespaces Usability and ResultPresentation only consist of user inter-
face dialogs created with the library for windows forms located by default in 
.NET framework namespace System.Windows.Forms. Especially the clas-
ses of the Usability namespace are likely to be useful for future add-in ex-
tensions, because they have been developed for generic use. 

• Common behavior of failure meta-models 

With FailureInstanceContainerBase and FailurePropagationModel in Profile-
Functionality namespace, the handling of instances and interface failure 
modes, respectively, is abstracted from, so most of the work for the integra-
tion of a new failure meta-model is done by inheriting from FailureIn-
stanceContainerBase and using the functionality defined in FailurePropaga-
tionModel. Thus, the actual profile classes contain only specific functionality 
for each respective failure meta-model, apart from hierarchical and interface 
issues. This approach has been applied successfully for the “CFT” and 
“Structural Propagation” profiles’ programmatic extensions defined in classes 
“CFT” and “StructuralPropagationModel”. 

• Abstraction from analysis tasks 

The behavioral “Gang of Four”-design pattern “Template Method” [24] is 
used for facilitating the implementation of new analysis operations by means 
of the class AbstractAnalysisTask, which is the base class for each imple-
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mented analysis operation like PrimeImplicantCalculator or QuantitativeAna-
lyzer. It encapsulates validation error handling, the asynchronous delegation 
of analysis tasks to the MTL and most important, the control sequence for 
analysis operations, i.e. only the contents of failure meta-model specific 
functions have to be implemented, not their correct invocation sequence. 
The functions include for example the serialization for a specific failure meta-
model or how analysis results are presented and stored. 

In addition, the AbstractAnalysisTask catches validation errors that are 
thrown in the ModelRuleValidator class. This class offers the possibility to 
define several rule sets that can be checked for a given serialized failure 
model. For example, there is a rule set for CFTs that checks if parameters 
for the required analysis operation are set correct and if element names 
don’t contain forbidden characters. These are only simple checks but the val-
idator is designed to be very flexible concerning the addition and the reuse of 
rules. For defining rule sets, it uses the concept of C# delegates, which can 
be compared to C++ function pointers that are type-safe. The idea is that 
each rule is defined in one function and a rule set is just an array of dele-
gates to the considered functions. The concept is similar to that of commonly 
used unit testing frameworks like JUnit [25], where the rule sets are similar to 
test suites and the rules are similar to test cases. 

The serialized and validated failure models are sent to the MTL during anal-
ysis. For the communication between FEL and MTL, the .NET part of the ex-
istent communication library already described in section 4.1.2 is used. 

4.2.2.3 Development Hints 

This section gives two possible procedures for the intended sequence of de-
velopment tasks for adding new features to the add-in. 

• Adding a new analysis operation to the add-in 

1. Add a menu entry to AddIn::C2FT_MenuItems by adding a class im-
plementing the interface IMenuItem 

2. Register menu entry to menu structure in AddIn::C2FT_MenuHandler 

3. Add a new communication module to Analysis::AlgorithmClient 

4. Create a class for the analysis operation inheriting from Analy-
sis::AbstractAnalysisTask and implement the abstract methods by 
using the communication module created in 3. 

5. Create or reuse a windows forms UI dialog class from Analy-
sis::ResultPresentation to present the results to the user 
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• Adding a new failure meta-model to the add-in 

1. Create a class for the failure meta-model profile inheriting from Pro-
fileFunctionality::FailureInstanceContainerBase 

2. Store there all tagged values and stereotypes defined in the declara-
tive profile 

3. Use ProfileFunctionality::FailurePropagationModel and APIFaçade 
namespace functionality to implement the profiles extended behavior 

4. Create a namespace under Analysis namespace for the safety anal-
ysis technique, which contains namespaces for each supported safe-
ty analysis back end 

5. Create a class in Analysis::Model Export namespace for XML seriali-
zation of the meta-model in case analysis is required 

6. Add a new model validation rule set for the added failure meta-model 
to Model Export::ModelRuleValidator and define rules for it 

7. Add a menu entry to AddIn::C2FT_MenuItems by adding a class im-
plementing the interface IMenuItem 

8. Register menu entry to menu structure in AddIn::C2FT_MenuHandler 

9. Create callbacks for the needed add-in broadcast events and use the 
methods from profile class to implement the callbacks appropriately 

4.2.2.4 CFT Analysis Example 

The sequence of the tasks done during the semi-quantitative analysis of 
CFTs in the FEL is visualized by a UML activity diagram in Figure 15. Its 
chronological continuation in the MTL has already been shown in Figure 8 in 
section 4.1.2.3. 

Initially, the menu command for semi-quantitative analysis is clicked by the 
user, which causes the EA API to fire the EA_Clicked broadcast event to the 
add-in, where the callback is called. Since a top event from a currently 
opened CFT diagram was selected, this CFT model as well as the parame-
ters needed for semi-quantitative analysis are serialized to a XML represen-
tation. In addition, a hash value for the model is computed for the XML rep-
resentation. Subsequently, the ModelRuleValidator performs a syntactical 
validation by checking the rules from the rule set that has been defined for 
this analysis operation. If the validation produces no errors, the top events 
tagged value for semi quantitative results is checked for existing results. The 
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computed hash value for the CFT serialization is unique for the current CFT 
element topology and parameterization. If results are available and the hash 
value didn’t change since the last analysis of the same top event, the results 
are simply retrieved from the CFT and presented to the user. Otherwise, 
semi-quantitative analysis has to be performed again. Therefore, a new 
analysis task is created, i.e. a message according to the ASClientLibrary 
protocol is created which includes the CFT XML representation and the tar-
get top event. Subsequently, this message is sent to the MTL. 
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Figure 15 CFT Semi-quantitative Analysis Example in FEL 

When the ASClientLibrary receives a response from MTL, it is forwarded to 
the SemiQuantitativeAnalyzer, which first checks the result XML structure for 
defined error tags. If an error is found, the user is notified. Otherwise, the 
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analysis results are stored in the top events tagged value for semi-
quantitative results and then presented to the user. 

4.3 Back End Integration 

This section describes, which back end analysis operations have been inte-
grated in the course of this thesis and how their results are presented to the 
user in EA. Furthermore, it gives a brief overview of the required tasks to in-
tegrate a new analysis back end consistently with the existing ones in the 
MTL.  

The main focus of the analysis back end integration in this thesis was to 
demonstrate that the connection to different analysis back ends can be es-
tablished. However, not all operations that the back ends are able to perform 
have been implemented.  

Concerning FTA, the EA prototype supports both quantitative and qualitative 
analysis. For the IESE back end, the supported quantitative operation is the 
top event probability computation for constant, uniform or exponential distri-
butions, while the qualitative one is the computation of prime implicants. With 
respect to FaultTree+, the prototype is able to compute minimal cut sets as 
well as top event probabilities with a large range of possible failure distribu-
tions like Weibull or Poisson distributions (see [26] for a complete list). 

Examples of how the analysis results are visually presented to the user in 
EA can be seen in Figure 20 in section 5.1 and in Figure 26 in appendix in 
section 6.1. 

In case a new analysis back end adapter should be integrated, the following 
tasks have to be accomplished: 

1. Create a new package named after the convention 
de.fhg.iese.<failureModelName>.analysis.<backendToolName> 

2. Create a package inside 1, which is responsible for providing an in-
terface to the API of the back end tool in Java. This step must only be 
done in the case, when the API is not implemented in Java. 

3. Create another package which contains the classes that encapsulate 
the actual analysis operations and use the java interface from 2. 
These classes have the responsibility to transform the SDM failure 
models into a representation that is understandable by the analysis 
back end tool API, e.g. the flattening in case of CFT analysis with 
FaultTree+. By convention, the analysis methods in the classes 
should only take the respective SDM failure models as single param-
eter to keep usage easy and dependencies minimal. 
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4.4 Crosscutting Aspects 

This section addresses aspects that were considered during the develop-
ment of the prototype but were also hard to be classified into front end layer 
or model transformation layer. 

• Failure model serialization 

For the serialization of failure models, the data structure XML has been cho-
sen, because it supports hierarchies by default and because there are robust 
libraries available that allow very efficient processing of XML documents, 
which appears to be extremely useful when considering the size of realistic 
embedded systems. For a better illustration of how the concrete serialization 
looks like, a CFT example model has been created and the accomplished 
analysis operation has been a prime implicants calculation with the IESE 
analysis back end. The CFT model as well as its serialization and the serial-
ized analysis results can be viewed in appendix under section 6.2. Note that, 
instead of serialization, it would theoretically be possible to have direct ac-
cess to the EA repository from Java by means of a Java implementation of 
the EA automation interface, but this approach has not been applied, be-
cause synchronization mechanisms have to be considered, when the “EA 
Data Model” is read and written by two APIs. Additionally, the APIFaçade 
doesn’t have to be maintained and optimized twice. 

• Validation strategy of model serialization and transformation 

An important aspect with respect to model serialization and transformation is 
their validation, i.e. the test whether the failure models that are modeled in 
the front end are semantically equal to the SDM failure models after trans-
formation. A formal proof at the current development stage is not practicable, 
because the SDM failure meta-models will likely change due to new re-
search results, so the transformation’s correctness proof would have to be 
redone for each change.  

For this reason, another testing strategy has been chosen: Simple failure 
models have been created in EA and subsequently analyzed with the IESE 
analysis back end. Simple means in this context that their complexity has 
been low enough to verify the results manually. Correct analysis results im-
ply a correct model transformation under the precondition that the analysis 
back end works correctly. With the intention of achieving an acceptable test 
coverage for CFTs, the created test models included all available basic 
modeling elements at least once and especially gates were modeled with dif-
ferent numbers for input and output connections. Special attention was paid 
to CFT instantiation concerning different hierarchy levels. However, it’s worth 
noting that only the intended usage of modeling elements was tested, e.g. 
basic events with input connections were not tested. 
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• Error Handling 

Because of the fact that there exist two different runtime environments, deci-
sions concerning error handling had to be made, namely how errors should 
be propagated and where they should be presented to the user. This wasn’t 
a problem before the integration of the EA front end, because MagicDraw 
plugins are also developed in Java, so errors in the analysis back ends could 
be directly shown to the user by means of Java UI dialogs at those places 
where they occurred. During the EA integration, the approach has been tak-
en to propagate errors through the TCP communication in order to show 
them in .NET UI dialogs fitting perfectly in the EA environment. The underly-
ing reason for this decision was that Java UI dialogs certainly popped up 
when errors occurred, but the user didn’t notice it, because the dialog win-
dow didn’t get the focus. In addition, the user experience within EA gets im-
proved. 

                        

Figure 16 Deployment Setting and Inter-Layer Communication 
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• Deployment and inter-layer communication 

The overall impression of how the communication between front end and 
model transformation layer takes place and how the developed prototype in-
cluding external libraries (shown in blue) is deployed is shown in Figure 16. 
Note that the Analysis namespace on .NET side and the 
de.fhg.iese.ea.cft.analysis namespace on the Java side are only shown ex-
emplarily for analysis communication and are by no means complete.  
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5 Evaluation 

The main task of this thesis has been the development of a prototype that in-
tegrates the ability to create and analyze safety models into the architectural 
modeling tool Enterprise Architect. The considered safety analysis technique 
has been FTA and it should be shown that C²FT models can be modeled in 
EA and analyzed with the IESE algorithm back end as well as with the com-
mercial FTA software FaultTree+. 

The developed prototype’s operation is shown by an example system that is 
created and analyzed in section 5.1. Section 5.2 summarizes the require-
ments of this thesis and concludes the degree to which they have been ful-
filled. Finally section 5.3 contains some possible directions for future work 
with respect to the SPES_XT requirements that have not been satisfied yet  

5.1 Prototype Evaluation 

The evaluation of the developed prototype in this thesis is structured in three 
parts: Initially, the example system’s component model is presented with a 
description of the implemented features for it. Subsequently, the failure 
models for the system’s components are given as well as their parameteriza-
tion for analysis. Finally, the computed results for the implemented analysis 
back ends IESE and FaultTree+ are shown. 

5.1.1 Component Model 

In order to perform the evaluation, an example system describes a Compo-
nentA, which is refined into two further components ComponentB and Com-
ponentC. ComponentB and ComponentC are leaf components, i.e. they 
don’t contain any instances of other components and therefore their internal 
structure is not relevant here.  

  

Figure 17 External Structure (left) and Internal Structure (right) of ComponentA 
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The two possible views of the system’s component model are shown in Fig-
ure 17. On the left side, the component external structure view of Compo-
nentA is shown. As explained in section 4.2.1.2, this view is supposed to be 
used, when a component’s whole refinement structure over all existing hier-
archy levels is of importance. In contrast, the component internal structure 
view shown on the right side of Figure 17 depicts the realization of only one 
refinement level. Note that the synchronization of model changes between 
component external structure and component internal structure views, e.g. 
the creation or deletion of component instances, has not been implemented 
yet. 

When ports are created or changed for a component instance in component 
internal structure view, this is automatically synchronized with its classifier 
component as well as with all of the classifier component’s instances. During 
the synchronization, consistency checks for duplicate port names are per-
formed. In order to support the feature that allows component instances to 
expose only a port subset of its classifier, the port deletion with component 
instances hasn’t any effect on the classifier. However, the deletion in the 
other direction is synchronized. When a completely-modeled component is 
instantiated in another component, all of its ports are automatically instanti-
ated as well. The user’s task is then only to delete those ports, which are not 
needed in the specific context. 

Additionally, the prototype facilitates navigation by introducing a custom 
menu for this. It’s possible to navigate from a component or one of its in-
stances directly to its associated failure model and vice versa. Depending on 
the system’s structure in the EA Project Browser and its size this can be a 
huge time saver. Furthermore, the prototype allows navigating from a specif-
ic component directly to all other components where the specific component 
has been instantiated in. 

5.1.2 C²FT Models 

This section describes the C²FT models, which have been created for the 
example system’s components to show the integrated safety modeling ca-
pabilities of the prototype. The models are depicted in Figure 18. Compo-
nentB’s associated failure model is a CFT, while ComponentC is associated 
to a FT. According to the system’s component model, these two failure mod-
els are instantiated in the CFT, which is associated with ComponentA. 

The presented failure models show all possible modeling elements for FTs 
and CFTs. These include basic events, input events, output events, compo-
nent instances, fault tree connectors, port mapping connectors and the gate 
types AND, OR, XOR, M/N and NOT. Although not shown in the models, it is 
also possible to assign descriptive names for gates. Since the stereotype 
CFTInstance didn’t deliver enough context information in its default caption, 
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this was customized to show the CFTInstance’s name as well as its classifi-
er’s name, failure model type and associated component. This can be ex-
emplarily seen for the instance of B_FailureModel in A_FailureModel, where  

 

 

Figure 18 C²FT Models of Example System’s Components 

“b_failureModel” is the instance’s name, “B_FailureModel” is its classifier’s 
name, “CFT” is the failure model type and “ComponentB” is the associated 
component. 

The described features for port synchronization in component models are 
analogously available for failure events with CFT instances and their classifi-
ers. This holds also true for navigation features. Note that port creations and 
changes in components are also synchronized with the C²FT models.  
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Apart from modeling C²FTs, the prototype also allows to model FTs and 
CFTs that are not associated to a component at all. This can be done by se-
lecting an EA package instead of an existing component, when pressing the 
menu command to create a new CFT or FT. 

5.1.3 CFT Analysis 

This section describes the prototype’s provided mechanism to parameterize 
failure models and subsequently compares the safety analysis results that 
have been computed for the example system with the IESE and FaultTree+ 
analysis back ends. 

The developed prototype is capable of performing qualitative, semi-
quantitative and quantitative analysis for C²FTs. Note that with semi-
quantitative analysis, a quantitative analysis is performed a defined number 
of times, where the failure probability for basic failure modes is randomly de-
termined from a normal distribution between defined boundaries for each it-
eration. The computation results are visualized by a histogram chart. Since 
randomization makes result validation difficult, semi-quantitative analysis is 
not considered in this section.  

                                  

Basic 
Failure Mode 

Failure 
Model Type 

Parameter 
Description 

Probability 

c_basic1 Constant cValue 0.1 
c_basic2 Constant cValue 0.3 

 

Figure 19 CFT Parameterization Dialog and Parameterization for C_FailureModel 

All parameters in the EA back end analysis profiles explained in section 
4.2.1.3 are represented by tagged values. Because of the fact that EA 
doesn’t provide a comfortable way for editing tagged values, a custom UI di-
alog, which can be seen in Figure 19, has been developed to enable the pa-
rameterization of failure models. The scope of this dialog is always only one 
failure model, in the example it’s C_FailureModel. The upper combo box 
control provides all elements that are contained by C_FailureModel, grouped 
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by their element types “Input Events”, “Output Events”, “Basic Events” and 
“Gates” for a better clarity. When an element is selected, the tab control is 
updated with the currently set parameters for the selected element, separat-
ed in different tabs for each supported analysis back end.  

Note that many parameter descriptions have a prefix character that looks 
superfluous at the first glance, however it’s mandatory, because there are 
some parameters in different failure model types having the same name and 
EA requires an element to have different names for different tagged values. 

In order to demonstrate quantitative analysis in an understandable way, the 
analysis is performed only for the example system’s ComponentC, whose 
associated FT has two conjugated basic events c_basic1 and c_basic2. The 
parameterization for the C_FailureModel’s basic events is shown in Figure 
19. The IESE back end delivered a top event probability of 0.03 for the 
C_FailureModel’s output failure mode c_failure_out with the given parame-
terization, which can be easily verified manually. 

  

Figure 20 Example System Analysis Results 
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The qualitative analysis of the example system’s C²FT models is shown by 
the computation of prime implicants in the IESE back end and minimal cut 
sets in FaultTree+. As the result names already suggest, FaultTree+ elimi-
nates NOT gates from FTs to gain coherent FTs, which have minimal cut 
sets as result. 

Figure 20 compares the computation results of both back end tools, that of 
FaultTree+ on the top and that of IESE on the bottom. They are presented in 
tab controls, where a tab is available for each output failure mode or gate 
that was analyzed qualitatively. The prime implicants as well as the minimal 
cut sets are ordered in a manner that those results with the lowest order ap-
pear at the top of the list, because these include those implicants having the 
greatest impact on the system’s safety. One can verify manually that both 
results are identical except for the fact that in IESE result view, those impli-
cants having a “-“ in front of the name are negative implicants. These are 
positive in the FaultTree+ result view because of the above mentioned co-
herence issue. 

5.2 Conclusion 

This section summarizes the requirements of this thesis and concludes to 
which degree they have been fulfilled. 

The Safe Component Model (SCM) should be evaluated with respect to the 
SPES_XT requirements. 

The SCM’s main concern was to implement the SPES modeling approach 
only for fault tree analysis. This thesis contributed significantly to the evolu-
tion of the SCM to the SDM by creating and implementing the necessary 
model abstractions, which were the first step to achieve an integrated 
framework that allows performing safety analysis with hetereogeneous anal-
ysis techniques. 

FTA should be included according to the SDM for the modeling front end EA 
in connection with analysis back ends from IESE and FaultTree+. 

The FT, CFT and C²FT models that resulted from the SPES_XT require-
ments have successfully been integrated both into the SDM and into EA by 
means of profiles and an add-in. As a consequence, their modeling in EA is 
fully supported. By means of the add-in and the implementation of the model 
transformation layer, qualitative, quantitative and semi-quantitative analysis 
operations can be performed for FT, CFT and C²FT models in the required 
back ends. However, the actual goal was to show only in principle that anal-
ysis tasks for C²FTs can be performed for the back ends within the 
SPES_XT layered architecture, so the goal’s fulfillment has been exceeded 
by providing analysis capabilities for all commonly used analysis operations.  
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The developer documentation should be as comprehensive that the proto-
type implementation can be maintained and extended. 

As it is usual in software development, information is presented beginning 
from an abstract view on the overall system down to the detailed depiction of 
different aspects of the system’s parts. This approach was followed in this 
thesis’ structure, too. The architecture’s description in section 3 first puts the 
notion of an abstract safety exchange layer into context. Then, it describes 
the functional contents of the front end layer and model transformation layer 
and their interaction in principle. Finally, their actual implementation for the 
front end EA and the analysis technique FTA is explained in section 4. 

Developers not familiar with the system can draw on sections 3 and 4 until 
they reach the subsections including concrete development hints that help 
them to maintain and extend the system. In addition, general information 
about the used technologies, e.g. the EA tool architecture or the process of 
creating MDG technologies, is given including the solutions for pitfalls that 
have been encountered during the development of the prototype. Their doc-
umentation avoids the search for the same problem solutions again and im-
proves the development knowledge for EA developers of Fraunhofer IESE in 
general. 

The model transformation of failure models from front end representation to 
SDM representation should be correct. 

The validation strategy for the model transformation has been detailed in 
section 4.4. Although the created test cases have succeeded, one has to be 
aware of the fact that a huge number of different CFT models exist that can-
not be tested manually, so an automatic mechanism would be desirable that 
is able to create and validate random models.  

Because of the fact that on the one hand only a minimal set of test cases 
has been created and on the other hand, unintended usage of model ele-
ments has not been tested, statements about the model transformation’s ro-
bustness can not be made at present development stage. However, this is 
negligible considering the actual intent of the system, namely its prototype 
character. At this stage, high test coverage is not needed unless the system 
is supposed to be used productively.  

5.3 Possible Directions for Future Work 

This thesis had two different goals: On the one hand, it performed the inte-
gration of Enterprise Architect as a modeling front end tool into the SPES 
tool architecture and on the other hand, it replaced the former used safety 
exchange format Safe Component Model with the Safety Development Mod-
el. In this respect, one could imagine of two possible areas for future work. 
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Firstly, the EA extension for C²FTs could be developed further with respect 
to usability and for more comfortable modeling capabilities, because there is 
much potential for the automation of tasks like it has already been done in 
the MagicDraw implementation. In addition, the current performance of the 
extension is not sufficient for the use with systems of realistic size, so a per-
formance optimization could also be taken into consideration. 

Secondly, in addition to fault tree analysis, SPES_XT also requires the inte-
gration of markov analysis and failure mode and effects analysis (FMEA) into 
the Safety Development Model. Thus, these techniques are also candidates 
for being integrated into EA in the future. 



65 

6 Appendix 

6.1 EA Development Additional Materials 

 

 

Figure 21 Toolboxes created within the front end prototype 
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Figure 22 EA Failure Propagation Model Profile 

  

Figure 23  EA Structural Propagation Model Profile 
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Figure 24 FaultTree+ Analysis Profile 
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Figure 25 EA Object Model [27] 
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Figure 26 EA Analysis Result Presentation 
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6.2 XML Serialization Example 

6.2.1 CFT Test Model 

  

Figure 27 CFT XML Serialization Test Model 

6.2.2 Serialized CFT 

<FailureModel Name="ParentComponent" GUID="{FBB51D05-83B4-40b6-B711-CEF18CA4D542}" FailureModelType  
="CFT" MissionTime="0"> 

  <outputFMs> 
    <outputFM Name="parentFailureOut" Stereotype="OutputFailureMode" GUID="{D3AF4F2A-B63E-41e6-8356- 

20FDD67B376B}" /> 
  </outputFMs> 
  <inputFMs> 
    <inputFM Name="parentFailureIn" Stereotype="InputFailureMode" GUID="{7E5A826F-7417-419e-A32E- 

1AAB075BD684}" /> 
  </inputFMs> 
  <basicEvents> 
    <basicEvent Name="parentBasic" Stereotype="BasicEvent" GUID="{64E21F24-9AF6-4339-A794- 
 973D867E5B52}"/> 
  </basicEvents> 
  <gates> 
    <gate Name="" Stereotype="NOT" GUID="{A5E2C564-7A48-4f59-B3AA-B105A60AE15C}" /> 
    <gate Name="" Stereotype="OR" GUID="{AD10B5E7-0FD6-460b-AFCD-F4D6E0E349DF}" /> 
  </gates> 
  <FailureModelInstances> 
    <FailureModelInstance Name="childCFT" GUID="{BC013602-1E8D-499a-BA7A-3C67E593CD65}"> 
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      <failureInports> 
        <failureInport Name="childFailureIn" Classifier="{2465A975-81A0-42b8-A85D-757C3D1FF797}"  

GUID="{26413AB4-4B93-4a36-9220-D57F48AD15D0}" /> 
      </failureInports> 
      <failureOutports> 
        <failureOutport Name="childFailureOut" Classifier="{D99B3865-B404-4eed-A19E-2A0234A89864}"  

GUID="{A5A02307-4AC0-4e33-8A40-EED6787319C5}" /> 
      </failureOutports> 
      <FailureModel Name="ChildComponent" GUID="{ABEAE856-E1CA-4667-813C-CE65FC3A7F46}" FailureModel 

Type="CFT" MissionTime="0"> 
        <outputFMs> 
          <outputFM Name="childFailureOut" Stereotype="OutputFailureMode" GUID="{D99B3865-B404-4eed- 

A19E-2A0234A89864}" /> 
        </outputFMs> 
        <inputFMs> 
          <inputFM Name="childFailureIn" Stereotype="InputFailureMode" GUID="{2465A975-81A0-42b8-A85D- 

757C3D1FF797}" /> 
        </inputFMs> 
        <basicEvents> 
          <basicEvent Name="childBasic1" Stereotype="BasicEvent" GUID="{D4CBA227-348D-4abc-A8E2- 

9BA2CC5F3D4B}" /> 
          <basicEvent Name="childBasic2" Stereotype="BasicEvent" GUID="{AA409D42-72A5-43ed-9B41- 

E6AB67995E0D}" /> 
        </basicEvents> 
        <gates> 
          <gate Name="" Stereotype="M/N" GUID="{BFE27FAE-0333-457d-B866-A4506C13EB26}" m="2" /> 
          <gate Name="" Stereotype="AND" GUID="{5958DE2E-613E-44dd-AB87-18C86847F1E6}" /> 
        </gates> 
        <FailureModelInstances /> 
        <connections> 
          <connection SourceElement="{AA409D42-72A5-43ed-9B41-E6AB67995E0D}" TargetElement="{BFE27FAE- 

0333-457d-B866-A4506C13EB26}" GUID="{FC7611F8-EA39-4e7b-BF03-D3D7C39ABD8C}" /> 
          <connection SourceElement="{BFE27FAE-0333-457d-B866-A4506C13EB26}" TargetElement="{D99B3865- 

B404-4eed-A19E-2A0234A89864}" GUID="{61142AC7-725E-40db-853D-A273930EC409}" /> 
          <connection SourceElement="{5958DE2E-613E-44dd-AB87-18C86847F1E6}" TargetElement="{BFE27FAE- 

0333-457d-B866-A4506C13EB26}" GUID="{7DF051F8-396C-4d1d-B70E-964BA90FEF82}" /> 
          <connection SourceElement="{D4CBA227-348D-4abc-A8E2-9BA2CC5F3D4B}" TargetElement="{5958DE2E- 

613E-44dd-AB87-18C86847F1E6}" GUID="{2D666991-F3D2-4a7a-8222-D7CF035CAB4C}" /> 
          <connection SourceElement="{2465A975-81A0-42b8-A85D-757C3D1FF797}" TargetElement="{5958DE2E- 

613E-44dd-AB87-18C86847F1E6}" GUID="{06CDE132-6E78-4502-9202-F2A053D14AD5}" /> 
        </connections> 
      </FailureModel> 
    </FailureModelInstance> 
  </FailureModelInstances> 
  <connections> 
    <connection SourceElement="{64E21F24-9AF6-4339-A794-973D867E5B52}" TargetElement="{A5E2C564-7A48- 

4f59-B3AA-B105A60AE15C}" GUID="{984EE77B-CBE0-4313-9405-B6909916E8C0}" /> 
    <connection SourceElement="{A5E2C564-7A48-4f59-B3AA-B105A60AE15C}" TargetElement="{AD10B5E7-0FD6- 

460b-AFCD-F4D6E0E349DF}" GUID="{E4B47117-71A1-4a41-AEC0-D8269427F68D}" /> 
    <connection SourceElement="{AD10B5E7-0FD6-460b-AFCD-F4D6E0E349DF}" TargetElement="{26413AB4-4B93- 

4a36-9220-D57F48AD15D0}" GUID="{821554EF-5287-423d-80CD-D9A8AE70F3B4}" /> 
    <connection SourceElement="{A5A02307-4AC0-4e33-8A40-EED6787319C5}" TargetElement="{D3AF4F2A-B63E- 

41e6-8356-20FDD67B376B}" GUID="{771E44B7-1E0C-445b-8212-DAB38D2D271A}" /> 
    <connection SourceElement="{7E5A826F-7417-419e-A32E-1AAB075BD684}" TargetElement="{AD10B5E7-0FD6- 

460b-AFCD-F4D6E0E349DF}" GUID="{F93613F8-0FC0-4be1-AF2E-AADB06C77C2A}" /> 
  </connections> 
</FailureModel> 
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6.2.3 Serialized Analysis Result 

<PICalculationResult> 
 <ElementOfInterest GUID="{D3AF4F2A-B63E-41e6-8356-20FDD67B376B}" AnalysisDate="Wed Oct 23  
   20:07:42 CEST 2013"> 
  <PrimeImplicant Order="3"> 
   <implicant Name="parentFailureIn" Positive="true"/> 
   <implicant Name="childCFT.childBasic2" Positive="true"/> 
   <implicant Name="childCFT.childBasic1" Positive="true"/> 
  </PrimeImplicant> 
  <PrimeImplicant Order="3"> 
   <implicant Name="parentBasic" Positive="false"/> 
   <implicant Name="childCFT.childBasic2" Positive="true"/> 
   <implicant Name="childCFT.childBasic1" Positive="true"/> 
  </PrimeImplicant> 
 </ElementOfInterest> 
</PICalculationResult>  
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