
Systematic engineering of
safe open adaptive systems
shown for truck platooning

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Master of Science (M. Sc.)

genehmigte Masterarbeit
von

Jan Reich

Datum: 15.12.2016

Erstprüfer: Prof. Dr.-Ing. habil. Peter Liggesmeyer

Zweitprüfer: Dr. Daniel Schneider

Betreuer: Dr. Rasmus Adler

Fachbereich Informatik, Technische Universität Kaiserslautern
Fraunhofer-Institut für Experimentelles Software Engineering (IESE)

Selbstständigkeitserklärung

Hiermit erkläre ich, Jan Reich, dass ich die vorliegende Masterarbeit mit dem Thema

„Systematic engineering of safe open adaptive
systems shown for truck platooning“

selbständig verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.
Die Stellen, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen wur-
den, habe ich durch die Angabe der Quelle, auch der benutzten Sekundärliteratur, als
Entlehnung kenntlich gemacht.

Kaiserslautern, den 15.12.2016 Jan Reich

i

Abstract

Recently, conditional safety certificates (ConSerts) have been proposed as a novel means
for the safety assurance of collaborations between open adaptive systems. Since the inno-
vation potential of such collaborations has been recognized in many different application
domains, it deemed desirable to demonstrate the general applicability of the ConSert ap-
proach across multiple domains. As yet, feasibility studies have only been conducted in the
agricultural and ambient-assisted living domains showing that ConSerts can in principle
assure a sufficient level of safety for collaborations in these domains. Therefore, this thesis
addresses the application and evaluation of the ConSert approach in another case study in
the automotive domain considering a platooning collaboration between two trucks, where
an autonomously operated truck should automatically follow a human-driven truck leading
the platoon. To enable ConSerts to constrain the effects of safety-critical system behavior
deviations on the collaboration, a description of the collaboration’s intended behavior is re-
quired as a necessary prerequisite for the definition of concrete behavior deviations. Thus, a
detailed approach for the systematic construction of related engineering models has been
developed that resulted in a service-oriented description of the intended platooning be-
havior being suitable for the subsequent methodological derivation of ConSert models. In
order to provide guarantees assuring that platooning is safe even during the presence of
certain failure-caused behavior deviations, a simulative approach has been utilized based
on a realistic platooning simulation model. The evaluation of the case study executed in
this thesis has yielded two primary results: On the one hand, evidence has been provided
that the ConSert approach can be successfully applied for platooning collaborations in the
automotive domain. On the other hand, the proposed method for the specification of safe
intended behaviors for collaborations has been defined to cover a wider scope leaving
enough way to easily adapt it for similar application scenarios.

iii

Kurzfassung

Erst kürzlich wurden „Conditional Safety Certificates“ (ConSerts) als eine neuartige Metho-
de vorgeschlagen, um die funktionale Sicherheit von Kollaborationen zwischen offenen
adaptiven Systemen zu gewährleisten. Da das Innovationspotenzial solcher Kollaboratio-
nen in vielen unterschiedlichen Anwendungsdomänen bereits erkannt wurde, erschien es
wünschenswert, die generelle Anwendbarkeit des ConSert-Ansatzes in solch vielfältigen
Domänen zu demonstrieren. Bisher wurden lediglich Machbarkeitsstudien in der Agrar-
domäne sowie in der Domäne des umgebungsunterstützen Lebens durchgeführt mit dem
Ergebnis, dass ConSerts prinzipiell in der Lage sind, funktionale Sicherheit für Kollabo-
rationen in diesen Anwendungsbereichen zu gewährleisten. Daher beschäftigt sich die
vorliegende Arbeit mit der Anwendung und Evaluierung des ConSert-Ansatzes in einer
weiteren Fallstudie aus dem Automobilbereich, welche die Kollaboration in einer Kolon-
nenfahrt zweier Lkw zum Gegenstand hat, bei der ein autonom gesteuerter Lkw automa-
tisch einem von einem Fahrer gesteuerten Lkw folgt. Um ConSerts zu ermöglichen, die
Effekte von sicherheitskritischen Verhaltensabweichungen der Systeme auf die Kollabo-
ration einzuschränken, ist eine Beschreibung des beabsichtigen Verhaltens der Kollabora-
tion Vorbedingung für die Definition konkreter Verhaltensabweichungen. Zu diesem Zweck
wurde eine detaillierter Ansatz zur systematischen Erstellung der zugehörigen Entwick-
lungsmodelle erarbeitet, welcher es ermöglicht, durch eine serviceorientierte Spezifikation
der beabsichtigten Kollaboration eine geeignete Basis für die methodische Herleitung von
ConSert Modellen zu schaffen. Ein Simulationsansatz auf Basis eines realistischen Simula-
tionsmodells für die Kolonnenfahrt ermöglichte eine ausreichende Validierung, um letzt-
lich Garantien für die Gewährleistung einer sicheren Kolonnenfahrt unter dem Einfluss
von durch Fehler verursachten Verhaltensabweichungen aussprechen zu können. Die Eva-
luation der Fallstudie lieferte zwei primäre Resultate: Einerseits wurde gezeigt, dass der
Consert-Ansatz für Kolonnen-Kollaborationen im Automobilbereich erfolgreich angewandt
werden kann. Andererseits wurde die vorgeschlagene Methode zur Erstellung der Spezi-
fikation eines sicheren Normalverhaltens von Kollaborationen so weit gefasst, dass sie ohne
Schwierigkeiten für ähnliche Anwendungen angepasst werden kann.

v

Table of Contents

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Problem statement ... 2

1.3 Thesis goals ... 3

1.4 Thesis structure.. 6

2 Related work... 7

2.1 Open adaptive systems ... 7

2.1.1 Definition of OAS ... 7

2.1.2 Transition from closed to open adaptive systems 8

2.1.3 Service architectures ... 9

2.2 Conditional safety certification (ConSerts) 11

2.2.1 Overview ... 11

2.2.2 Operationalization of ConSerts............................. 12

2.2.3 Validation of the ConSert approach 14

2.2.4 Engineering of ConSerts...................................... 16

2.3 Truck platooning .. 19

2.3.1 Research projects.. 19

2.3.2 Truck platooning safety 20

3 Solution overview ... 25

3.1 Running example ... 25

3.1.1 Truck platooning scenario description 26

3.1.2 Scenario constraints .. 26

3.2 Solution big picture .. 28

3.2.1 Safe nominal behavior specification 30

3.2.2 Safe fail behavior specification 34

4 Engineering safe nominal behavior 37

4.1 Preliminary hazard and risk analysis 37

4.1.1 Problems of conventional HARA for OAS............... 37

4.1.2 Platooning safe condition derivation 39

vii

Table of Contents

4.2 Functional decomposition ... 42

4.2.1 Decomposition strategy....................................... 42

4.2.2 Platooning system decomposition......................... 43

4.3 Role and configuration analysis...................................... 47

4.3.1 Role and configuration concept............................ 48

4.3.2 Platooning configuration analysis 49

4.3.3 Platooning configuration selection........................ 51

4.4 Function deployment.. 53

4.4.1 Deployment strategy... 53

4.4.2 Platooning function deployment........................... 55

4.5 Service architecture derivation 59

4.5.1 Generic collaboration service architecture 59

4.5.2 Platooning service architecture 62

5 Engineering safe fail behavior... 67

5.1 Service safety analysis ... 67

5.1.1 Safety analysis for OAS collaborations 67

5.1.2 Platooning safety property definition 71

5.2 Simulative safety property quantification......................... 73

5.2.1 Quantification concept.. 73

5.2.2 Physical model building of a truck 76

5.2.3 Realization in Matlab/Simulink 81

5.2.4 Simulation results ... 82

5.3 Collaboration safety concept ... 85

5.4 ConSert derivation ... 89

5.4.1 Transition from domain to systems engineering...... 89

5.4.2 Platooning ConSerts definition 91

6 Discussion and conclusion ... 95

6.1 Summary .. 95

6.2 Discussion ... 98

6.3 Conclusion .. 101

6.4 Future research recommendations.................................. 102

References ... 103

A Appendix... 107

A.1 Differential equations mathematical solution 107

A.2 Supplementary material .. 110

viii

List of Figures

2.1 Conceptual overview of ConSerts .. 11

2.2 ConSerts meta-model ... 13

2.3 Visual representation of a ConSert ... 15

2.4 Safety domain model.. 16

2.5 Engineering activities and the SDM .. 18

3.1 Truck platooning high-level functional net............................... 27

3.2 Nominal behavior vs. fail behavior of OAS collaborations 28

3.3 Safe nominal behavior specification – Activities overview 30

3.4 Safe fail behavior specification – Activities overview 34

4.1 Safe nominal behavior construction – Chapter structure 37

4.2 HARA scope single systems vs. OAS collaborations................... 38

4.3 Safe distance visualization ... 40

4.4 Platooning collaboration states .. 41

4.5 Initial functional model of the platooning system..................... 42

4.6 Temporal braking process.. 44

4.7 Physical quantities influencing the stop distance of a vehicle 45

4.8 Final functional model of the platooning system 47

4.9 Variability support through roles and configurations................. 48

4.10 Platooning sensor deployment analysis 50

4.11 Platooning roles and their configurations 52

4.12 Function deployment – Platooning scenario S1 56

4.13 Function deployment – Platooning scenario S2 58

4.14 Generic OAS collaboration service architecture 60

4.15 Service architecture - Platooning scenario S1 63

4.16 Service architecture - Platooning scenario S2 65

5.1 Safe fail behavior construction – Chapter structure 67

5.2 Failure propagation in OAS collaborations............................... 68

5.3 Service classification within OAS collaborations........................ 70

5.4 Safety property types of service get_sBrake and get_V 72

5.5 Impact of service behavior deviations on collaboration safety 75

ix

List of Figures

5.6 Simulative quantification of safety properties........................... 76

5.7 Driving resistance forces acting on a truck............................... 78

5.8 Stop distance composition for the braking process................... 79

5.9 Block diagram of distance and speed controller 80

5.10 GUI for controlling simulations of the platooning system 82

5.11 Simulation results ... 83

5.12 Selection of concrete safety property refinements 84

5.13 Safety property refinements – Platooning scenario S2............... 86

5.14 Abstract safety concept for the platooning system 87

5.15 OAS development phases ... 90

5.16 ConSerts for leader and follower configurations 92

6.1 Summary of engineering process for safe OAS collaborations.... 97

A.1 Safety property types of service types get_RoadFrict and
get_RoadInc .. 110

A.2 Simulink model of drivers, trucks, environment (top) and pla-
tooning system (bottom)... 111

x

List of Tables

2.1 Comparison of existing platooning projects............................. 19

4.1 Function deployment heuristics.. 55

5.1 Simulation parameter variation .. 83

5.2 Assumed truck parameters for determining the normalized
performance.. 94

xi

1 Introduction

1.1 Motivation

In the last two decades, society witnessed a strong trend towards a high
level of connectivity, which can be observed by looking at how smart-
phones found their way into our daily lives. Nowadays, they provide useful
services that can significantly improve how human-beings manage their
daily routines. Examples are automatic traffic alerts based on the detec-
tion of our typical movement habits or guidance in foreign places where
we are not street-smart.

The essential ingredients of such functionalities are on the one hand the
connectivity of devices and on the other hand the composition of multiple
separate services into higher-level emergent services providing an innova-
tive value to their consumers.

Apart from the private sector, various commercial application domains
have discovered the potential of connectivity and service composition, too.
The automotive domain leads the way in researching use cases where cars
communicate with other cars and smart infrastructures (Car2X) while driv-
ing and thus providing emergent services to the drivers. These include for
example systems that can significantly increase safety by warning other
road users of obstacles or traffic jams long before they arrive at the re-
spective places. Thinking further, if complete vehicle fleets were inter-
connected, their data could be used to make traffic and road manage-
ment much more efficient by individual and dynamic navigation of cars.
This type of application is referred to as smart mobility in literature and
media [1]. Additionally considering the simultaneously increasing level of
autonomy, human drivers can be relieved from their driving task in the
long run and can focus on other activities while still maintaining high lev-
els of safety and driving comfort.

It can be expected that the automotive domain and in particular the com-
mercial vehicle sector will be highly impacted in a positive sense by the
trend towards more autonomy and Car2X communication. A McKinsey
study on the future of the commercial vehicle sector shows that the global
market turnover will increase by almost 50% until 2025 [2]. The identified
main drivers for this increase are autonomy as well as inter-vehicle connec-
tivity, which demonstrates the importance of these concepts for research,
too.

Many of these conceivable use cases that could be realized in the future,
are typically dependent on both collaborative knowledge and actions per-
formed by interconnected networks of systems, so called systems of sys-

1

Problem statement

tems. In literature, systems of systems are typically also referred to as co-
operative systems, cyber-physical systems or – like in this thesis – open
adaptive systems (OAS). These kinds of systems are open in that they are
designed to collaborate at runtime with other potentially unknown sys-
tems. In addition, they should be able to adapt themselves dynamically to
their given environmental context in a preferably optimal way.

1.2 Problem statement

Since a lot of innovative collaborations of systems are inherently safety-
critical, i.e. they might cause harm or damage to their environment, the
assurance of a sufficient level of safety is a high priority objective for the
development of these systems.

Guaranteeing the required safety level however is a serious challenge, be-
cause traditional safety engineering and assurance approaches are usu-
ally not applicable without further ado. Traditional safety engineering ap-
proaches only target closed systems. Thus, they can leverage from a com-
plete knowledge about the system’s structure, interaction schemes and
environment at design time. Having this knowledge, safety experts typi-
cally make use of model-driven approaches that enable a modular safety
assurance of the system components and their assemblies. State-of-the-
art realizations of model-driven safety approaches cover all activities of
the safety life cycle, namely hazard analysis and risk assessment [3], safety
analysis [4] and safety requirement specification. Finally, a safety case as-
sembles the results of the former activities into one central model serving
as an argumentation basis for the final certification step.

In the context of OAS, traditional approaches are hardly applicable be-
cause essential information about the structure and interactions between
the systems at runtime is missing at design time. This includes the lack of
knowledge on how the services provided by a system or one of its compo-
nents will be consumed by other potentially unknown systems at runtime.
In addition, both openness and adaptivity aspects foster the reuse of sys-
tems or their components in new OAS. The consequence is that system
developers can hardly foresee how the functionality of their system under
development might be (mis)used in the future and thus how the imple-
mented variation points of the system will be resolved at runtime.

A general strategy to overcome this problem is to shift safety engineering
activities from design time to runtime. At runtime, all necessary informa-
tion for taking informed decisions with respect to safety is available. The
shifting of the activities however requires the system itself to act more in-
telligent by being aware of its own safety properties during operation. This
exceeds the capabilities of simple fault tolerance mechanisms, because
these only preserve correct service in the presence of active system-internal
faults, but do not have to consider all conceivable kinds of collaboration
partners and their behaviors.

2

Introduction

If safety engineering activities are shifted to runtime, their models must
also be available at runtime. This imposes additional requirements with re-
spect to the models’ machine-readable representations in terms of space
and execution time efficiency, because especially commercial embedded
hardware is typically dimensioned rather concise concerning the available
memory space and computing power. Apart from hardware requirements,
machine-readable models require a certain degree of formalism to be pro-
cessed solely by a computer.

A promising approach that follows the strategy of shifting certain
safety activities to runtime is given by conditional safety certificates
(ConSerts) [5]. Evaluation studies of this approach have already been
conducted in the agricultural as well as the ambient assisted living do-
mains. The studies have shown that the ConSert approach is capable
of providing the conceptual framework for enabling safety assurance of
OAS in general and of tractor-implement automation scenarios as well as
health emergency detection scenarios in particular.

However, assuring safety for open adaptive systems based on ConSerts is
still a challenging task for two reasons:

1. It is not known yet, if the ConSert approach is in general sufficient to
cover any application domain and application setting.

2. There is neither an established engineering approach nor a detailed
guideline for the application of the ConSert approach.

In the following section, the contribution of this thesis regarding the solu-
tion to the above mentioned problems will be stated.

1.3 Thesis goals

This thesis aims at contributing to the solution of the challenges being
identified in the problem statement with respect to the application and
evaluation of the ConSert approach. In order to tackle the first identified
problem, the approach should be applied and evaluated within another
case study for the automotive domain.

The automotive domain differs from the agricultural domain, for which
ConSerts have been evaluated already, in that it is driven by different reg-
ulatory standards, which directly affect how OAS have to be developed for
a specific domain. Furthermore, the runtime environment of automotive
applications is typically less constrained, e.g. there are potentially more
different kinds of collaboration partners the OAS has to deal with.

As a concrete application scenario, truck platooning has been chosen. In
a nutshell, truck platooning is an operational mode, where multiple trucks
on a highway drive together in a convoy, also called platoon, by maintain-
ing very small inter-vehicular distances. The main benefit of platooning is a

3

Thesis goals

reduced amount of needed fuel for all participating trucks resulting from a
reduction of aerodynamic drag when close spacing is maintained. In addi-
tion, close spacing yield a better space occupation efficiency on highways
in general.

Note that truck platooning also represents a different application setting
than the already evaluated tractor-implement scenario in the agricultural
domain. When tractors and implements should be integrated to safely col-
laborate on the field at runtime, their compatibility with respect to safety
is checked only once at that time. Afterwards, they will be mechanically
coupled and thus their connection will be static during collaboration. In
contrast, the truck platooning scenario includes a higher degree of dynam-
ics in that first, the trucks are only coupled through a wireless connection
and second, the environmental influences like road or weather conditions
as well as the potential diversities of the trucks themselves have a much
more dynamic impact on the collaboration.

The differences with respect to application domain and application setting
make truck platooning an interesting scenario for an evaluation of the
ConSert approach. In order to make such a platooning collaboration safe
for all participating trucks, two different aspects of its development will be
considered concretely in this thesis:

Goal 1 – Systematic engineering of safe nominal behavior for the
collaboration between two trucks

The main functional goal of truck platooning is to maintain a distance
between the trucks that is as short as possible but still safe. “Safe” in this
context means that certain critical accidents like a frontal crash cannot
occur, for instance when the leader truck has higher braking capabilities
than the follower truck and performs an emergency brake maneuver so
that the separation distance is not able to compensate for this diversity.
The accident in this example is neither caused by a systematic software nor
a random hardware failure but caused by the intended functionality itself,
namely the fact that the maintained separation was too small with respect
to the given collaboration context factors. This shows that the safety of the
intended collaboration, which will be referred to as safe nominal behavior
throughout this thesis, needs to be considered already in the functional
specification of the OAS.

In terms of truck platooning the only way to reliably determine and main-
tain a safe distance between the trucks is through the mutual exchange
of information about the trucks’ motion states as well as the collabora-
tion’s environmental context such as road conditions at runtime. Thus, it
is necessary to decide and formalize in the functional specification of the
collaboration,

− which information needs to be exchanged to achieve the collaboration
goal,

4

Introduction

− how often that information needs to be exchanged between the col-
laboration partners and

− which collaboration partner has access to the required information

In general, an information typically runs through the following temporal
sequence within an OAS: analog-to-digital conversion in sensors, sensor
post-processing such as noise filtering, fixed-point or floating-point com-
putations, transformations into and from different memory representa-
tions, de-/modulation on a wireless medium and finally its feedback into
the environment in shape of a set point for an actuator. All of these steps
have in common that they take a certain processing time and more im-
portantly that they affect the quality of the information either in a posi-
tive (e.g. sensor fusion) or in a negative way (e.g. rounding errors during
floating-point computations). Thus, it is in particular important to know
for the receiver of an information to which extent the information reflects
the reality. This can be achieved by enriching an information with an in-
dication about its quality, which could be for example value confidence
intervals or timing guarantees.

In summary, this goal contains the creation of a safe nominal behavior
specification for the truck platooning scenario, which forms the basis for
analyzing failure-caused deviations from that behavior by specifying Con-
Sert models.

Goal 2 – Methodological derivation and construction of related
ConSerts models for guaranteeing a safe collaboration during
failure

Having specified a proper safe nominal behavior specification for truck
platooning, accidents having their cause in the intended functionality can-
not occur anymore. However, it can be expected that either random hard-
ware or systematic software faults are existent in platooning-relevant parts
of both trucks and eventually lead to failures which themselves propa-
gate through the platooning system. We need to distinguish between two
types of these failure propagations:

Firstly, failures can propagate through the system of one collaboration
partner, over which complete knowledge is existent at design time from
the point of view of a system manufacturer. In the platooning scenario,
the scope of such failure propagations would be one truck only and thus
they can be mitigated by means of classical functional safety within that
truck.

Secondly, failures in shape of faulty values may also propagate through the
collaboration interface to another truck. In order to still maintain a safe
collaboration, the receiving truck can tolerate faulty values to a certain
degree while “paying” for this tolerance with an increased distance that
is non-optimal with respect to fuel-saving. Another strategy is to decide
to dissolve the platoon for safety reasons. In any case, the bounds of the

5

Thesis structure

tolerated deviations need to be quantified and communicated so that the
receiving truck can react properly.

ConSerts provide a methodological framework for formally specifying the
bounds of deviations from the nominal behavior in shape of guarantees
and demands. Each truck as a collaboration partner has to specify on the
one hand, which type of information it can provide with what accuracy.
However, the range of this accuracy guarantee can change, e.g. due to
failures. On the other hand, the truck also poses demands to its collabora-
tion partners indicating, how much deviation from the nominal behavior it
can tolerate while still guaranteeing a safe collaboration. In order to finally
achieve a safe fail behavior for platooning at runtime, the demands of all
trucks have to be matched by guarantees of other trucks.

In summary, this goal deals with the operationalization of ConSerts for
the truck platooning scenario. The construction of ConSerts includes ac-
tivities and artifacts that need to be aligned with typical and suitable safety
engineering methods and techniques. Furthermore, they need to be con-
ceptualized with respect to their integration into safety engineering tools
to leverage their potential for (semi-)automation. In addition, it should be
analyzed how ConSerts can support a dynamic optimization of business-
related properties with respect to changing environmental conditions or
truck variabilities.

1.4 Thesis structure

This thesis is structured in seven chapters. Following this introduction,
Chapter 2 provides an overview of the foundations of open adaptive sys-
tems and the state of the art of their safety assurance. In addition, safety-
related research for truck platooning is given. After having introduced the
running example in more detail at the beginning of Chapter 3, a solu-
tion overview is presented exemplifying the thesis goals as set out in Sec-
tion 1.3 using the running example and presents both the respective chal-
lenges and how they can be addressed by existing methods. Next, Chap-
ter 4 presents the solution approach for the first goal by elaborating on
the specific activities and artifacts that, being followed, yield a safe nomi-
nal behavior specification. Chapter 5 builds upon its preceding chapter in
that it explains a solution for the second goal, namely how to construct
a safe fail behavior for truck platooning while tolerating certain kinds of
deviations from the nominal behavior. Afterwards, Chapter 6 first gives a
summary followed by an evaluation to which extent the thesis goals have
been met and a critical discussion on the results as well as lessons learned
during the case study execution. Finally, a conclusion and possible areas of
future work are presented.

6

2 Related work

This chapter presents the foundations on which the work of this thesis
is built on. Since this thesis aims at the application and evaluation of the
ConSert approach for open adaptive systems (OAS), Sections 2.1 and 2.2
first describe the state of the art of OAS as well as the ConSert approach.
Next, Section 2.3 addresses how vehicle platooning has been realized in
the past and what efforts have been spent to assure its safety.

2.1 Open adaptive systems

In order to understand which complexities arise during the transition from
the development of closed systems towards the development of OAS this
section will introduce a basic definition of OAS as well a distinction be-
tween closed systems and OAS. In addition, it will be described how the
concepts of service-oriented architectures (SOA) have been applied to OAS
and more specifically to automotive OAS in the past.

2.1.1 Definition of OAS

Disregarding the adaptivity aspect at first, some definitions for open sys-
tems of systems (SoS), sometimes also referred to as cyber-physical sys-
tems or cooperative systems, will be given in this subsection. The results
of an extensive literature survey on SoS have been published in [6] and [7].
These results contain numerous definitions from literature, from which
only those are presented here, which the author deemed best applicable
for the scope of this thesis, namely systems of embedded systems.

Definition 1 SoS exist when there is a presence of a majority of the fol-
lowing five characteristics: operational and managerial independence,
geographic distribution, emergent behavior and evolutionary develop-
ment.

Definition 2 SoS engineering involves the integration of systems into SoS
that ultimately contribute to the evolution of the social infrastructure.

Definition 3 SoS are large-scale concurrent and distributed systems that
are comprised of complex systems.

Definition 4 SoS are large-scale integrated systems which are heteroge-
neous and independently operable on their own, but are networked for
a common goal. The goal may be cost, performance, robustness, etc.

7

Open adaptive systems

The favorite definition of this thesis’ author for SoS is given in [8], because
it clearly distinguishes the role of single systems and their composition into
SoS as well as the creation of a value that cannot be achieved by single
systems alone.

Definition 5 A SoS is comprised of autonomous constituent systems ful-
filling an objective as independent systems but beyond that interde-
pendent via interoperability to fulfill holistic objectives. A commonly
discussed set of characteristics are autonomy, belonging, connectivity,
diversity and emergence as they contrast a system and a SoS. SoS emer-
gent behavior and capabilities is a product of the interactions that are
greater than the sum of the independent actions of the constituent
elements describing a constitutive SoS.

The five characteristics autonomy, belonging, connectivity, diversity and
emergence describe the core sources for challenges that have to be ad-
dressed in the systems engineering discipline during the ongoing transition
from single closed systems to SoS.

The term open adaptive system (OAS) that will be used throughout this
thesis to describe the collaborating single systems within SoS, emphasizes
the connectivity and diversity aspects of Definition 5, because these are
the main challenges being addressed by the ConSert approach in assuring
safety for SoS.

2.1.2 Transition from closed to open adaptive systems

The essential nature of closed embedded systems is that they are control-
ling physical processes based on perceiving their environment through sen-
sors and transforming these inputs through their functionality into outputs
affecting the environment in the desired way. Thus, the system’s boundary
structure and its interactions with the environment are known at design
time. Since the only existing sources of knowledge are sensors and the
system itself, the space of realizable applications is limited.

OAS as defined in the previous section aim at implementing smarter func-
tionalities that can only be realized by using more extensive (environmen-
tal) knowledge, which can only be generated by arrays of diverse systems
building a collaborative intelligence. In order to establish the access to and
exchange of collaborative knowledge, closed systems need to be opened
by introducing well-defined communication interfaces. In particular wire-
less communication with the outside world is new for embedded systems
and thus demands the development of communication protocol stacks be-
ing able to guarantee quality of service during the collaboration of OAS.
In the automotive domain, there exist ongoing standardization efforts for
the realization of so-called Dedicated Short Range Communication (DSRC)
among vehicles and infrastructure (Car2X) within the European [9, 10] and

8

Related work

North-American [11, 12] areas. An interesting aspect is that both stan-
dards explicitly address safety applications.

The possibility that OAS can have different adaptation configurations leads
to challenges, when a collaboration among OAS should be planned top-
down. In order to guarantee qualities like safety or functional perfor-
mance, it would be necessary to test all combinations of the configura-
tions of each participating OAS with respect to a specific collaboration
scenario. This approach leads to a combinatorial proliferation and is thus
not economical. Moreover, assuming that the different OAS are developed
by different companies in isolation, it is very probable that no extensive
knowledge is available at design time about systems and their possible
configurations that the OAS under development should collaborate with.

In order to overcome this problem, a first step towards (self-)adaptation is
to pre-engineer a set of variants for an OAS at development time and to
realize the transition between these variants at runtime based on rules that
assess the given runtime context. In this way, the single OAS are consid-
ered as black boxes whose potential diversities are constrained by explicit
variants. More elaborated mechanisms for switching between variants are
goal-based and take into account optimization potentials with respect to
specific collaboration goals.

In conclusion, both openness and adaptivity aspects represent a challenge
with regard to the prediction and assurance of collaboration qualities
(safety, security, performance, etc.) for which no commonly accepted so-
lutions exist yet. In order to handle the high complexity of OAS and to
allow making reasonable predictions on their qualities, the following de-
velopment aspects are of crucial importance (the driver is annotated in
brackets):

1. Decoupling of the collaborating systems by the application of modular-
ization principles (Openness)

2. Standardization and formalization of the communication interfaces be-
tween OAS. This also includes an explicit consideration of quality as-
pects (Openness)

3. Pre-engineering of system and collaboration variants (Adaptivity)

2.1.3 Service architectures

In the information system domain, the shift from component-based archi-
tectures towards service-oriented architectures (SOA) has been observable
during the last decade. SOA is an approach to realize application function-
ality by the orchestration of highly decoupled black-box components that
have well-defined interfaces (called service interfaces). SOA provides the
following advantages:

9

Open adaptive systems

Loose coupling The specific realization of a service is decoupled from its
usage in shape of a formal service interface. Typically, service consumer
components are also deployed on different physical entities than the
service providers. Both of these aspects yield highly decoupled systems.

Standardization Due to standardized communication interfaces be-
tween service provider and service consumer, the infrastructure for
service discovery, service announcement and the communication layer
protocols can be separated from the service application logic.

Flexibility Since services are designed in a modular way, new system
functionalities can be generated very flexibly by orchestrating different
existing services.

Reusability Services typically provide access to small and cohesive tasks
and thus allow an easy reuse in different applications.

Due to these advantages and the inherent distributed nature of OAS,
service-orientation has been discovered as a suitable concept for modeling
the interface between OAS, too. However, within the context of OAS, the
quality of service with respect to quality attributes like safety, (functional)
performance, timing, etc. is of essential importance. These qualities are
typically not focused on by traditional SOA approaches and thus, they can
hardly be applied as-is for OAS.

Within the automotive domain, there have been various attempts for the
application of SOA: For example, [13] used a service-oriented approach for
the improvement of traffic routing by making use of Car2Car communica-
tion. The distribution of sensor fusion across different cars in a cooperative
adaptive cruise control scenario (CACC) implemented with SOA has been
presented in [14]. One fundamental assumption in this case was that only
the environmental situation around the collaboration changed, while the
internal systems of the cars stayed static over collaboration time, which
is typically not the case for OAS. Wagner et al. explicitly take the adaptiv-
ity aspect into account and proposed a SOA-based middleware solution as
well as a development process guiding the creation of service architectures
of distributed driver assistance systems in [15]. The approach is derived
from IBM’s “Service-Oriented Modeling and Architecture” methodology
and is called Service-Oriented Driver Assistance (SODA). For the develop-
ment and documentation of service models, they used the Service Ori-
ented Modeling Language (SoaML) [16] which has been standardized by
the Object Management Group (OMG) and is available as a UML profile.
As part of the Conserts approach (see Section 2.2), a formalization of ser-
vices in terms of both functional and quality dimensions, especially safety,
has been proposed, too.

10

Related work

2.2 Conditional safety certification (ConSerts)

Having provided a basic understanding of OAS in the previous section, this
section will focus on conditional safety certificates (ConSerts) [5], being the
first methodological approach that tackles the openness and adaptivity
challenges of OAS from the safety perspective.

2.2.1 Overview

The fact that OAS are often safety-critical systems, requires them to be
certified before being released into operation. However, traditional safety
certification relies on a complete system knowledge at design time, which
is not given for OAS due to the reasons described in Section 2.1.2. Thus,
safety engineering activities need to be shifted to runtime, where all de-
sign time uncertainties can be resolved. The idea of ConSerts for the so-
lution to this problem is to follow a modular certification approach, which
creates predefined modular safety certificates for (sub-)systems whose
structures and behaviors are completely known at design time. These cer-
tificates are conditional in that they enable the support for several adap-
tation variants (=configurations) of a certified (sub-)system.

Figure 2.1: Conceptual overview of ConSerts (adapted based on [5])

Figure 2.1 shows the conceptual overview of ConSerts. ConSerts define
safety contracts in terms of mapping functions that relate safety guar-
antees of an OAS to safety demands that are required to be fulfilled by
other OAS or the environment. At design time, traditional safety assur-
ance activities are carried out to assure that specific guarantees can be
given for an OAS under the condition that associated safety demands are
fulfilled. Adaptivity is supported by providing different guarantees varying
with respect to the strength of the guaranteed properties meaning that
weaker guarantees typically lead to weaker required demands. Multiple
safety guarantee/demand relations with varying strengths are necessary to

11

Conditional safety certification (ConSerts)

increase the probability for a successful integration. The reason for this is
the lack of a central integration responsibility, since this responsibility is dy-
namically distributed among the different OAS. As soon as several OAS are
about to be integrated into a collaboration at runtime, their ConSerts are
composed dynamically and thus, the collaboration’s safety can be assured
by checking if the demands of all collaborating OAS are fulfilled. This does
not only include safety demands satisfied by other systems, but also prop-
erties that need to be satisfied by the collaboration environment itself, e.g.
that the mandatory communication infrastructure is existent and properly
initiated. Such demands are called runtime evidences. Eventually, to enable
the dynamic evaluation of ConSerts at runtime, a machine-readable repre-
sentation of ConSerts as well as technical solutions for their composition
and analysis need to be available.

2.2.2 Operationalization of ConSerts

In order to operationalize ConSerts for OAS, an essential precondition is
that the used architectural modeling approach supports the abstraction
from concrete system interfaces in terms of a formal description of both
functional and non-functional properties the systems provide to their en-
vironment. As elaborated in Section 2.1.3, service-oriented architectures
support the required concepts in a powerful and efficient way by establish-
ing provided and required services for systems that represent well-defined
interfaces for provided and required black-box functionalities. Although
the application of ConSerts is in general not limited to service-oriented
architectures, the ConSert approach assumes systems to be architecturally
decomposed with services due to the advantages of SOA.

Figure 2.2 depicts the ConSerts meta-model describing the relations be-
tween the elements used for the architectural composition of OAS by
means of services (green area), the elements used for formalizing the
safety properties of these services (red area) and the elements for the com-
position of safety contracts for OAS in shape of ConSerts (blue area).

For the application of ConSerts, it is sufficient to describe the functional-
ity of an open adaptive system in terms of a set of configurations, which
provide certain functional services to the environment and require other
functional services to deliver their provided functionality. Configurations
express pre-defined functional variants of OAS that result from their ability
to adapt themselves to different runtime contexts mainly due to dynamic
service availability of other collaborating OAS. A provided or required ser-
vice as such first and foremost describes a functional purpose. This could
be for example the provision of a speed value or an interface for receiving
remote control commands from other systems. Functional Service Types
serve in this respect to capture the detailed and formalized description of
the services’ functional aspects, which include properties like data types
(e.g. numeric or compositional), units, valid value ranges, value resolu-
tion or provision frequency (continuous or event-based). In this way, each

12

Related work

Figure 2.2: ConSerts meta-model

concretely instantiated service complies with exactly one functional ser-
vice type. Note that the explicit separation of functional service types from
their usage in concrete services allows to build domain-specific repositories
of reusable service types. In addition to so-called basic functional service
types, which represent the building blocks for the communication among
OAS, there exists also a special service type referred to as application ser-
vice. Rather than representing an interface between OAS, the application
service provides the overall collaboration’s functionality to human-beings
and thus generates the desired business value of the collaboration.

In Section 2.1.2, the lack of consideration of quality properties within ex-
isting SOA approaches has been stated. The ConSert approach tackles
this issue with respect to safety by enriching functional service types with
safety-related information. In this way, a concrete service does not only
comply with a functional service type anymore, but has associated safety
properties that themselves comply with a safety property type. Safety
property types describe possible failure modes of functional services or
more precisely, they describe deviations from a specified functional behav-
ior. Figure 2.2 shows a commonly used classification for safety property
types that distinguishes between value, provision and timing failures. In
the same way like functional service types, safety property types could be
organized in a domain-specific type system and assigned to specific safety
properties. So far, a concrete service consists of its functional behavior

13

Conditional safety certification (ConSerts)

and safety properties that define possibly occurring failure modes for the
functional behavior. With respect to the speed provision service example,
one possible safety property type is Value too high. However, this informa-
tion as such is not sufficient for describing a service failure in its entirety,
because whether a too high speed value is critical for a collaboration may
differ from scenario to scenario. Thus, when instantiating a safety property
from a safety property type, it needs to be refined with respect to a specific
collaboration scenario. This refinement has to specify quantitatively, when
a certain deviation from the functional specification is considered to be a
service failure. In addition, it can contain information on the possible con-
sequences of the failure within the specific scenario. The knowledge on
potential consequences of service failures is a precondition for assessing
the risk of behavioral deviations expressed as refined safety properties. In
summary, refined safety properties offer the possibility to specify guaran-
tees or demands that assure with a specific level of confidence that certain
safety requirements will be satisfied for a specific service. Put differently,
the safety requirements assure with a certain confidence that behavior de-
viations of services do not exceed the specified boundaries. From a safety
point of view, the collaboration partner providing the application service
also has the special responsibility of providing the safety guarantees asso-
ciated to the application service. These guarantees are direct translations
of the collaboration’s safety goals.

Having defined concrete services and their associated safety properties,
the final step is the composition of ConSerts for the existing configura-
tions of the OAS through mapping functions. These mapping functions re-
late guaranteed safety properties of provided services to demanded safety
properties of required services or runtime evidences. By using Boolean
functions for the mappings, dependencies between guarantees and de-
mands can be expressed by common OR and AND relations. For each
provided guarantee of each provided service, there shall be a separate
ConSert Tree (CST), represented by a Boolean function f : Bk → B. In-
puts of the mapping function are k Boolean variables, each representing a
demanded set of safety properties belonging to a required service. Such a
Boolean variable is true if the demanded safety properties are actually met
at runtime. Thus, if all Boolean variables that are logically related to a spe-
cific guarantee render true, the safety properties of that guarantee hold
for the provided service. In a nutshell, ConSerts consist of multiple CSTs,
which model the conditions for the guarantee variants of each provided
service. Figure 2.3 shows an example visual representation of a ConSert
from the agricultural domain, where the described CSTs can be observed.

2.2.3 Validation of the ConSert approach

As yet, the ConSert approach has been evaluated in two case studies car-
ried out in the agricultural and ambient assisted living domain.

14

Related work

Figure 2.3: Visual representation of a ConSert (from [5])

In the first case, ConSerts have been applied to a tractor implement man-
agement system (TIM) for the following collaboration scenario: Tractors
from manufacturer A should work together with round balers from man-
ufacturer B. Since the round baler system has a better understanding on
how concrete accelerations, speeds and steering should look like for cre-
ating perfect straw bales, the round baler should be able to control the
tractor movement accordingly. In this way, the tractor provided a service to
the round baler to control the tractor’s speed. Besides the instantiation of
ConSerts in the agricultural domain, the TIM case study also targeted the
investigation of adequate engineering methods supporting the definition
of ConSerts. The case study results showed that ConSerts can successfully
handle TIM scenarios and that it proved useful to split the engineering
activities into domain-level and system-level activities. This finding will be
described in more detail in Section 2.2.4.

The second case study evaluated an emergency detection system (EDS) for
the assistance of elderly people. Based on a set of already existent sen-
sor and actuator devices for the health monitoring of the assisted person,
ConSerts came into play for determining if sufficient safety guarantees can
be given for the EDS, when new devices from a health monitoring device
market place should be integrated into the EDS. The main characteristic
of this scenario was the amount of different devices that were available,
which led to the result that an adequate domain-level standardization of
service types and safety property types needs to be carried out. Another
result was a proof-of-concept of the implemented runtime evaluation pro-
cedures for ConSerts.

15

Conditional safety certification (ConSerts)

2.2.4 Engineering of ConSerts

The ConSert evaluation case studies have shown that it is useful to split
the engineering activities enabling the composition of ConSerts in domain-
level and system-level activities.

Domain-level engineering

The observation that collaboration scenarios within specific domains of-
ten use similar basic functional service types which also have similar safety
property types, led to the idea to create a domain-specific repository for
these elements, the so-called Safety Domain Model (SDM), which is shown
in Figure 2.4. Although concrete OAS are not completely known at design
time, basic functional service types together with their safety property
types can be assumed to be required for several collaboration scenarios
within a domain. To that end, the SDM captures this knowledge so that
it can be easily reused in the system-level engineering phase, when the
ConSerts for concrete OAS have to be created.

Figure 2.4: Safety domain model (adapted based on [5])

Collaboration scenarios can be thought of as typical interaction patterns
that occur within a specific domain. Such interaction patterns include par-
ticipant roles, structural information about the role interfaces in shape of
functional service types as well as interaction schemes. Assuming that a
comprehensive set of basic service type specifications exists for an appli-
cation domain, safety property types can be derived by the application of
suitable safety analysis techniques. [17] recommended deductive hazard
operability studies (HAZOP) for the safety analysis of service types, since
the causal model of HAZOP matches the idea that failures occurring in con-
crete OAS will eventually manifest themselves at the service-level and will
therefore have consequences on a given collaboration. In addition to the
identification of functional service types and safety property types, inter-
device runtime evidences have to be standardized on the domain-level
as well, since their evaluation involves the interaction between multiple
participant devices/roles. Thus, the interaction protocols for this evalua-
tion need to be specified on the domain-level. Furthermore, in particular

16

Related work

domain-specific communication protocol stacks have to be considered for
the technical realization of ConSert composition and evaluation and thus
ConSert evaluation protocols have to be standardized on the domain-level
as well.

Despite the advantages provided through an existent SDM, there exist
some challenges for its creation, too:

1. The creation of the SDM includes a high amount of preparation work,
during which no direct benefit can be generated.

2. Domain engineering relies on the background knowledge of experts
rather than on real systems and thus the standardized elements might
not fit concrete required usage scenarios.

3. Standardization for an entire domain needs common agreements
within a majority of companies of that domain. Such agreements can
be negatively influenced by communication challenges and competi-
tion.

4. A suitable level of abstraction needs to be found for the SDM to leave
enough space for solution flexibility in concrete OAS realizations.

However, having the identified challenges of domain-level engineering in
mind, a diligently maintained SDM can be highly beneficial for the industry
in the long run. The fact that technology research and innovation as well
as experience are key enablers for new collaboration scenarios, also means
that the SDM will be subject to a continuous evolution.

System-level engineering

Having the safety domain model definition as a basis, it can be used for
the creation of ConSerts for concrete OAS that should later on participate
in collaboration scenarios. Figure 2.5 shows the relation between domain-
and system-level activities through the SDM.

When a new OAS should be developed or extended to support a spe-
cific collaboration, the first step is to explore the safety domain model for
available information on the desired collaboration scenario and its vari-
ants. The selection of variants that should be realized in the OAS under
development directly guides the determination of the functional services
that have to be provided by the OAS. Selecting several variants implies the
realization of multiple configurations where each configuration describes
exactly one supported collaboration variant.

Based on configurations describing provided and required services, safety
goals and associated safety guarantees have to be determined, which can
be created by means of traditional safety engineering techniques like haz-
ard and risk assessment (HARA) techniques. Obviously, the selection of
multiple collaboration variants leads to higher development costs due to
the provision of higher safety guarantees. However, the business benefits
that can be leveraged from a better collaboration performance in case of

17

Conditional safety certification (ConSerts)

Figure 2.5: Engineering activities and the SDM (adapted based on [5])

higher provided guarantees, can make this investment attractive. Thus, the
main engineering goal is to provide sufficient guarantees for the provided
services of the collaboration variants which have been selected according
to business decisions.

Once the safety goals and their associated safety guarantees have been
derived, a safety concept has to be developed that provides an argumen-
tation ensuring that the safety goals are satisfied. The creation of a safety
concept starts with a safety analysis of the OAS under development which
explores the causes that can lead to a violation of the safety goals. The
safety property types defined in the SDM can act as a starting point for
the system-level safety analysis. The safety goal violation causes can either
be located internal in the OAS under development or can be caused ex-
ternally by required services or runtime evidences. In any case, the safety
concept should address the identified causes with appropriate counter-
measures or additional safety demands. The formalization of the relation
between safety guarantees and safety demands (=the ConSert(s)) of the
OAS under development can be carried out based on the contents of the
safety concept.

The final step is the actual certification of the OAS under development:
After an extensive examination of the documentation of the safety goals,
the safety concept and the derived ConSerts, an authorized certification
body will issue the required safety certificate. The required documentation
could be for instance organized in a safety case, while the actual structure
of the safety case might be dictated by domain-specific safety standards.

18

Related work

Vehicle
type

Control
Traffic

integration
Sensors Goals

SARTRE Mixed
Lat

Long

Highway,

Mixed
Production

Comfort, safety,

congestion,

energy saving

PATH
Cars or

Heavy

Lat

Long

Dedicated

lane
Mixed

Increased traffic

throughput,

energy saving

GCDC Mixed Long Mixed Mixed

Acceleration

cooperative driving

system deployment

Energy-ITS Heavy
Lat

Long

Dedicated

lane
SotA

Mitigate lack of

skilled drivers

SCANIA Heavy Long
Highway,

mixed
Production

Commercial fleet,

energy saving

KONVOI Heavy
Lat

Long

Highway,

mixed
Production

Traffic throughput,

driver acceptance,

legal implications

This thesis Heavy Long
Dedicated

lane
Mixed

Safety,

vehicle diversity,

engineering process

Table 2.1: Comparison of existing platooning projects (extended based on [18])

2.3 Truck platooning

Since the thesis goals described in Section 1.3 explicitly focus on truck pla-
tooning scenarios in the automotive domain, this section gives an overview
of the state-of-the-art for the realization of truck platooning and similar
scenarios. In particular, it will be explained, how safety has been addressed
for truck platooning in the past.

2.3.1 Research projects

An overview of the five most notable research projects that have dealt with
vehicle platooning systems in recent years is given in [18]. More specif-
ically, the following projects have been considered: Safe Road Trains for
the Environment (SARTRE) – a European platooning project, PATH – a Cal-
ifornia traffic automation program, Grand Cooperative Driving Challenge
(GCDC) – a cooperative driving initiative, SCANIA platooning, the German
KONVOI project (RWTH Aachen) and Energy ITS – a Japanese truck pla-
tooning project.

All of these projects have in common that they solve the platooning prob-
lem through the exchange of information through vehicle-to-vehicle com-

19

Truck platooning

munication. However, the provided platooning concepts as well as the
technical solutions and goals differ due to different research motivations
within the projects. On a high level, the principal variations in the exam-
ined platooning scenarios are compared with respect to the following five
parameters in Table 2.1.

Vehicle type Indicates whether a platoon can consist of cars, heavy
trucks or a combination of both (“mixed”)

Control Indicates whether the projects consider only the longitudinal
control of the platoon or in addition the lateral control

Traffic integration Indicates whether other traffic participants (cars or
trucks) not belonging to the platoon are considered. “Highway, mixed”
represents a multi-laned highway where cars, trucks and the platoon are
driving in a realistic setting. In contrast, a single dedicated lane assumes
that there is no other traffic than the platoon itself.

Sensors Indicates whether sensors have been used that are already in
production (“production”). “SotA” implies either that the sensors are
currently infeasible or too expensive for commercial production. When
a project is annotated with “mixed”, both types of sensors have been
used.

Goals The goals that guided research for the projects

Refer to [18] and its reference list for more technical details on the pre-
sented projects.

2.3.2 Truck platooning safety

Apart from different existing platooning concepts and technical solutions
for their realization, it is in particular interesting in the context of this
thesis, how safety has been addressed in platooning research. To that
end, [19] investigated in a systematic literature review (SLR), what is cur-
rently known about safety for vehicle platooning including which analysis
methods have been used, which hazards and failures have been identified
and which solution elements have been proposed to improve platooning
safety. In addition, a gap analysis has been provided identifying outstand-
ing research questions for which no sufficient solutions exist yet. Note
that the systematic literature review also covers safety-related research of
all projects given in Table 2.1.

Although a majority of publications within the vehicle platooning area
mention safety as an important aspect for the realization of platooning,
only few of them give explicit proposals how to achieve safe platooning.
An exception to this fact is the extensive study of string stability, which
is a necessary prerequisite to avoid vehicle collisions within a platoon due
to disturbances in the control system. Since string stability is mostly stud-
ied for the intended platooning collaboration (i.e. under the absence of

20

Related work

failures), its achievement does not give sufficient argumentation on the
collaboration’s safety.

With respect to safety analysis methods, the SLR has found that analy-
ses have been conducted on two levels: First, on the system safety level,
where the comprehension of the system’s safety as a consequence of the
integration of components, users and the environment has been analyzed.
Second, the analyses of specific aspects such as component failure conse-
quences or certain kinds of damages have been carried out.

Interestingly, only very few publications mention established system safety
analysis methods like fault tree analysis (FTA), Failure Mode and Effects
Analysis (FMEA) or Hazards and Operability Analysis (HAZOP). [20], who
tried to apply the ISO 26262 to a platooning system, state in this respect
that the standard is insufficient, when the safety analysis scope changes
from a single vehicle to cooperative systems. More specifically, they deem
the severity classification of hazards as an issue and therefore propose a
fourth severity level also leading to an additional ASIL level E. The assess-
ment of risks for vehicle collisions influenced by different vehicle spacings
was subject of the studies in [21]. They analyzed how different vehicle
spacings can lead to casualty risks, which allow a fatality probability esti-
mation by applying the Abbreviated Injury Scale (AIS) to different collision
speeds. There also exist theoretical approaches for the identification of
safety regions that are based on control or game theories.

The picture on hazardous situations and accidents that occur in pla-
tooning scenarios is quite consistent in literature and can be summarized
as:

1. A vehicle in the platoon runs into a preceding vehicle and this becomes
an issue, when the first vehicle needs to perform an emergency braking
maneuver.

2. A platoon vehicle crashes into another vehicle during cut-in situations,
where the other vehicle changes lanes to end up in the middle of the
platoon.

3. Harm is caused due to a platooning vehicle exiting the road in an at-
tempt of trying to avoid a collision by steering.

With respect to longitudinal control of platooning vehicles, two safety
goals are identified as a consequence of the actuation of both brakes and
accelerator:

1. No unintended full braking in platooning at cruise speed

2. No sudden unintended full acceleration in platooning at low speed

A categorization for potential sources of technical (component) failures,
which could guide safety analyses, include the areas sensors, actuators,
inter-vehicle communication, computation, internal communication net-
works, driver interfaces and infrastructure. Especially for system collabora-

21

Truck platooning

tion scenarios, interactions between several failures of these classes have
to be considered, too.

For the general handling of failures, some strategies have been pro-
posed that introduced a number of levels characterizing safe states rang-
ing from the immediate stop of the vehicle as the most severe to no re-
quired special handling at all. There exists a general agreement on the
basic technical solutions that affect platooning safety in a positive way.
With respect to sensors, redundancy and sensor-fusion concepts have
been identified as very important. The main focus regarding actuation
is residing on redundant secondary brake systems or to implement two
brake actuators. A clear conclusion among the research community is that
platooning approaches without communication are insufficient. It is sug-
gested to apply redundancy patterns as well for inter-vehicle communi-
cation, e.g. to complement radio communication with infrared or visible
light communication.

Another relevant aspect for platooning safety is how differences in vehicle
configurations affect safety and how safe platooning can be realized in
presence of these variabilities. However, the majority of reviewed studies
assume that vehicles participating in a platoon have similar capabilities,
especially with respect to braking, which is judged as the most safety-
critical behavior during platooning. The only known solutions to this issue
reside on the management level and advise either to order the vehicles
according to brake capability with the least capable being the platoon
leader or to limit the brake force of the leader to that of the least capable
vehicle. A general problem with respect to vehicle variabilities is the lack
of models to provide reliable data on vehicle capabilities such as available
brake forces and the lack of understanding what data accuracy is required
for these capabilities.

In summary, it can be stated that the realization of safe vehicle platoon-
ing clearly lacks of systematic safety analysis using well-established tech-
niques. In addition, standards like ISO 26262 or IEC 61508 have been
rarely explicitly addressed in the context of vehicle platooning. A possible
explanation could be that these standards are insufficient to deal with co-
operative systems in their current state. From an economical point of view,
vehicle platooning will only be a widespread success, if diversities in vehi-
cle characteristics are explicitly considered and the formation of platoons
is not restricted to vehicles from the same brand. Thus, new actors like
standardization bodies come into play that have to define interoperability
requirements for the interactions between vehicles of different brands.

Although not focused on the automotive domain explicitly, RailCabs (Uni
Paderborn) [22] is nevertheless an interesting research project, because it
deals with the platooning problem for self-adaptive cyber-physical systems
in the railway domain. RailCabs are autonomous railway vehicles that may
form platoons automatically on track without mechanical coupling. The
performance requirements of the RailCab system are higher than those for

22

Related work

typical vehicle platoons, since RailCabs drive at 160 km/h with very small
distances of less than one meter. In order to satisfy these requirements,
the platoon leading RailCab functions as a coordinator who is responsible
for deciding, when and where other RailCabs may safely join or leave a
platoon. In addition, the coordinator announces all acceleration and brak-
ing maneuvers before they are started, since feedback controllers cannot
react fast enough to guarantee safe and stable platoons. This is a major
difference to conventional vehicle platooning, because there the leading
vehicles cannot announce maneuvers before they occur, since these are
driven by human-beings whose behavior cannot be predicted. The strategy
for guaranteeing safety in the RailCabs system relies on formal verification
techniques based on assume-guarantee reasoning.

23

3 Solution overview

This chapter first introduces the truck platooning scenario in detail as it
will be used throughout the case study conducted in this thesis. After-
wards, the challenges that needed to be solved for achieving the thesis
goals (see Section 1.3) will be put into a big picture and exemplified by
means of the running example. It will be stated to which extent existing
methods can address the challenges and where new solutions had to be
developed within this thesis. Thus, this chapter serves as a high-level road
map through the contents of this thesis.

3.1 Running example

Concerning the choice of a suitable application scenario for which the
case study of this thesis should be conducted, there have been various
candidates in the context of OAS to choose from. For the reasons stated
in Section 1.1, the automotive domain and more specifically a truck pla-
tooning scenario have been chosen. Various research groups and industry
companies have already studied truck platooning from different research
angles, mostly embedded in internationally funded research projects. De-
tails on these projects as well as an overview on their efforts with respect
to safety assurance are given in Section 2.3. The research budgets invested
in truck platooning in general show that the mastering of truck platooning
scenarios is of high practical relevance.

This thesis’ case study is aligned with the European Truck Platooning Chal-
lenge 2016 (ETPC) [23], an international research project initiated to boost
the evolution of truck platooning within the European Union. The focus
area of this challenge is that two or more trucks of different vendors can
build platoons dynamically. This includes a step-wise increase of the level
of automation so that the necessity of having human drivers on every
truck can be finally shifted to having only one driver operating the leading
vehicle of the platoon. In this way, the transport efficiency is augmented
by eliminating the need to for follower drivers to be subject to stipulated
driving time and rest period limitations.

Apart from enabling business benefits, another major goal of the ETPC
2016 is the improvement of traffic safety. The fact that truck platoon-
ing scenarios are realized by OAS and are inherently safety-critical, i.e. all
safety life cycles activities need to be performed, shows their suitability for
an evaluation of the ConSert approach on a full scale.

25

Running example

3.1.1 Truck platooning scenario description

In order to identify the different functional aspects inherent to truck pla-
tooning, a typical sequence of its steps is described in the following realis-
tic scenario:

As a mission goal has been defined that two heavy-duty transportation
trucks with up to 40 tons of weight have to transport their goods from
Stuttgart, Germany to Rotterdam, Netherlands [24]. The route only con-
sists of well-developed multiple lane highways each direction. Having en-
tered the first highway section in Stuttgart, the human drivers are still
driving their trucks manually. Next, both get an indication on their dash-
board displays that there are trucks in the reachable area supporting the
building of a platoon. After both drivers actively opt in, the platooning
system determines based on vehicle characteristics, which of the trucks
should lead the platoon and finally the follower driver hands over the driv-
ing control to the system. At that point, the inter-truck distance is still 50
meters which is the minimum legally allowed distance between trucks on
German highways at speeds higher than 50km/h [25]. Since the platoon-
ing system has a much faster reaction time than a human-being, it slowly
decreases the distance from now on until a value is reached so that the
worst-case maneuver, namely a full stop of both trucks with maximum
possible braking forces, will not lead to a frontal crash. This so-called safe
distance may vary based on different runtime context influences:

− system-external influences such as weather or road surface conditions

− system-internal influences such as the current truck speeds, tire wear,
brake capabilities or truck weight

The platooning system continuously receives these runtime conditions for
all platoon participants through wireless communication among the trucks
and reacts to condition changes by either increasing or decreasing the dis-
tance. It also detects lane change maneuvers of the leading truck and
takes care that these operations are safely performed for both trucks and
all other road users. Finally, when the platoon is approaching the highway
exit at Rotterdam the platooning system should notify both drivers that
according to their mission goals the platoon is going to be dissolved soon
and thus the follower driver needs to prepare for taking over manual con-
trol again. After the notification has been triggered, the system increases
the distance to 50 meters again, where the follower driver resumes man-
ual control by pressing a dedicated button on his user interface.

3.1.2 Scenario constraints

Figure 3.1 shows the different functional blocks extracted from the sce-
nario description above. The three main functions are Platoon building,
Platoon driving and Platoon dissolving and have been further broken down
into more explicit functionalities. Note that some connections as well as

26

Solution overview

irrelevant refinements of functions have been omitted due to diagram sim-
plicity.

Both Platoon building and Platoon dissolving include switching the truck
control between system and human through the communication between
drivers and their user interfaces. In the context of autonomous driving, the
aspects of these functions are focused on by whole research communities
like cognitive sciences or human computer interaction [26] and should
for the sake of simplicity be excluded from the scope of this thesis. The
same holds for Platoon driving’s sub functions Lateral control and Monitor
other road users. All excluded functions and actors are colored in grey in
Figure 3.1.

Figure 3.1: Truck platooning high-level functional net (grey = out of this thesis’ scope)

Recalling the purpose of the case study, namely to apply the ConSert ap-
proach for yielding a safe collaboration during Platoon driving, the Longi-
tudinal control function contains the relevant conceptual parts to demon-
strate all aspects of the approach. As soon as an application guideline has
been derived based on the Longitudinal control, it should be easily appli-
cable for similar functions like the Lateral control as well without further
ado.

The exclusion of Lateral control implies that in the running example there
is only one lane on a perfectly straight road. Furthermore, no other traf-
fic such as cars, trucks or any other obstacles are existent. With respect
to the earlier mentioned runtime variabilities, the following ones shall be
explicitly considered:

27

Solution big picture

− Truck weight including the current cargo weight

− Maximum brake capabilities of the brake systems

− Road inclination

− Road surface conditions (Icy, Rainy, Dry)

− Weather conditions having an impact on the accuracy of visual sensors

3.2 Solution big picture

This section will put the thesis goals as set out in Section 1.3 into rela-
tion and shall thus serve as a high-level overview into which the specific
activities of the construction of both safe nominal and safe fail behavior
specifications will be embedded in Sections 3.2.1 and 3.2.2, respectively.

Figure 3.2: Nominal behavior vs. fail behavior of OAS collaborations

28

Solution overview

Figure 3.2 depicts the relation between safe nominal and safe fail be-
haviors in the context of OAS. In order to enable a specific collaboration
behavior between different collaboration partners being an OAS each, the
OASs themselves have to provide certain behaviors through their func-
tionalities. A set of behaviors that is observable for a certain OAS during
a collaboration is depicted as a Behavior Space in the figure. Given a spe-
cific Environmental Context during runtime, the Nominal Behavior Space
of the overall collaboration is spanned through the combination of the
environmental context and the behavior spaces of the single OASs. The
Nominal Behavior Space explicitly only includes behaviors that arise from
the intended functionality of the collaboration. Obviously, all observable
collaboration behaviors should be safe at any time and thus the nominal
behavior space should be completely subsumed by the space of safe be-
haviors (depicted as the green area in the figure). Unsafe behaviors that
potentially lead to accidents are represented with the red area in the fig-
ure. Summing up the upper part of Figure 3.2, the behaviors of the collab-
orating systems need to be specified in such a way that the collaboration’s
nominal behavior will be safe in any given environmental context.

Like closed systems, open adaptive systems are prone to the occurrence
of random hardware and systematic software failures, too. Under the in-
fluence of failures, the observable behaviors of the collaborating OASs
deviate from their specified intended functionalities. Thus, the behavior
space for each OAS is extended with behaviors resulting from deviations
from their intended behavior (indicated by red arrows in the lower part
of Figure 3.2). The extensions of the single OASs’ behavior spaces lead to
an extension of the overall collaboration’s behavior space as well, which
is denoted in this thesis as Fail Behavior Space and indicated with a red
dashed ellipse in the figure’s lower part. Note that the term fail behavior
can only be used when talking about the overall collaboration, because
whether a certain behavior is a fail behavior (referred to as behavioral
malfunction in ISO 26262 [27]) or not cannot be decided for a single OAS
without considering the collaboration context. Thus, an OAS can only pro-
vide a set of observable behaviors, which might be considered hazardous
within specific collaborations while in others, they are not safety-critical at
all. Consequently, instead of dealing with fail behaviors for single OASs,
we can only observe deviations from their nominal behaviors [28]. If these
deviations exceed certain limits, the resulting Fail Behavior Space of the
overall collaboration is extended in such a way that it might overlap with
the space of unsafe behaviors (red area). Therefore, in order to guaran-
tee a safe collaboration also during the occurrence of deviations from the
nominal behavior, the deviations need to be explicitly bound by design in
such a way that also the fail behavior space is completely encompassed by
the safe behavior space (green area).

Considering the running example, a nominal behavior of the follower
truck could be Braking with maximum brake force. Due to a systematic
software failure within the follower truck, the effectively applicable brake

29

Solution big picture

force is reduced to 80% of the originally assumed maximum brake force.
Thus, the brake force is deviating from its nominal value by 20%, more
specifically, it is 20% lower than assumed. Whether this deviation is dan-
gerous for the given platoon (i.e. the collaboration behavior is unsafe and
leads to a crash), it can be explicitly controlled by the distance that is main-
tained between the trucks. If the distance is high enough, the trucks will
not crash even if the actual follower braking capability is lower than as-
sumed. In the reverse conclusion, the more conservative the separation
is chosen, the higher the degree of deviation is tolerable without risking
unsafe platooning. However, a more conservative distance will lead in-
evitably to a worse platooning performance in terms of fuel saving. Apart
from the fact that deviation bounds need to be explicitly quantified, this
example shows that a trade-off has to be found between collaboration
performance and behavior deviation tolerance.

Concluding from the above thoughts, the first necessary activity for
achieving a safe collaboration is the specification of a safe nominal be-
havior for the collaboration, which includes the derivation of nominal
behaviors for the collaborating OASs as well. Afterwards, the potential
deviations from the nominal behavior need to be analyzed and reasonable
bounds have to be explicitly defined quantitatively for each deviation. The
definition of these bounds has to be carried out in such a way that firstly,
the collaboration stays safe although a deviation occurs and secondly,
the trade-off between collaboration performance and failure tolerance
is resolved optimally. In this way, the main constituents of the safe fail
behavior specification will be the characterization of behavior deviations
and their quantification. In the following subsections, the sequence of
activities for the construction of both safe nominal and safe fail behavior
specifications will be elaborated in more detail.

3.2.1 Safe nominal behavior specification

Having explained the terminology and most important concepts of the de-
velopment of OAS in Section 2.1, this section will exemplify the challenges
of the safe nominal behavior specification (Thesis goal 1) by using the run-
ning example. To this end, Figure 3.3 shows an overview of the activities
(boxes) as well as the main input and output artifacts (circles).

Figure 3.3: Safe nominal behavior specification – Activities overview

30

Solution overview

The main input for the safe nominal behavior derivation is a set of require-
ments for the intended collaboration. The key functional requirements
of the running example have been described in terms of a scenario and
associated use cases in the previous section. Based on these requirements
the functionality needs to be decomposed hierarchically.

The first challenge in this respect has been to find a starting point for
the functional decomposition. Having the goal in mind to construct a safe
nominal behavior, hazards caused by the intended functionality need to
be avoided from the outset. However, functional safety standards like ISO
26262 do not address this so-called safety-in-use yet [29], although there
are ongoing standardization efforts with respect to the safety of the in-
tended functionality1. In the context of OAS, the safety of the intended
functionality is more critical than in closed systems, because OASs will be
only integrated at runtime and thus a guaranteed safety-in-use is ques-
tionable due to the degree of uncertainty about the integration context
at development time. Thus, the accidents that can occur through the in-
tended collaboration have to be known explicitly before any functional
design can materialize. Therefore a preliminary hazard and risk analy-
sis (HARA) has to be carried out so that the safety goals that should be
met by the nominal behavior are known. Due to the constraints of the
running example (single lane, no lateral motion, no other road users but
two trucks), there is only a limited number of critical accidents that can
occur, namely a frontal crash, where the follower truck crashes into the
leader truck. In order to find the hazardous events leading to an accident,
existing HARA approaches examine malfunctioning behavior in certain op-
erating modes and operational situations. In the context of OAS, this ap-
proach yields problems, because whether a certain behavior like “Leader
is braking” is malfunctioning or not can hardly be judged without addi-
tionally considering the state of the collaboration scenario, namely if the
distance between follower and leader is large enough given the current
runtime context. Trying to anticipate the effect of a behavior in all possi-
ble and potentially unknown collaboration situations will likely lead to a
combinatorial explosion. In order to avoid this problem, we formalized the
accidents in terms of physics and formulated their negation as safe condi-
tions, which form the basis for the functional decomposition to make sure
accidents are avoided by design. In terms of truck platooning the safe con-
ditions pose constraints on the motion state of the collaboration, namely
that the distance between the trucks must not fall below a certain value.

The distance between the trucks is thus a physical entity that has to be
controlled by the platooning function, i.e. it is a functional output rep-
resenting a set point. However, the specific value for the distance being
considered as safe is dependent on the characteristics of the trucks and
the environment at runtime, which are inputs to the platooning function.
The functional decomposition can be carried out by initially creating

1http://www.iso.org/iso/catalogue_detail.htm?csnumber=70939

31

http://www.iso.org/iso/catalogue_detail.htm?csnumber=70939

Solution big picture

one function per safe condition that takes care that the condition will be
met. The inputs of these functions will be hierarchically decomposed by
using physical laws until only physical entities are left that can be directly
measured or determined. The function outputs directly refer to set points,
for which other physical entities need to be found that are able to realize
these set points. This strategy of decomposing the system function in two
different directions (towards inputs and outputs) is called horizontal re-
finement (also known as superposition refinement) and is described [30].
The eventual goal of the functional decomposition is to have a mathemat-
ical relation between the measurable inputs and actuatable outputs of the
platooning function.

Having a functional model of platooning in place, the next step in tradi-
tional system development would be to refine the functional model into a
more technical one considering the details of both actual truck platforms.
However, this approach assumes these details are known in their entirety,
which is not the case for OAS. This can be observed in the running exam-
ple, where we have two trucks that should both realize truck platooning,
but are developed by two different manufacturers in isolation. Thus, a
big challenge is to deliver as much constraints to each manufacturer as
necessary for implementing platooning in a safe manner, but still leaving
enough space for design flexibility. To that end, instead of deploying func-
tions directly to concrete truck system components, we deploy functions
to an additional layer of abstraction, which is comprised of the roles of
a collaboration. Within the running example, these roles are leader and
follower. This abstraction is capable of sufficiently describing the collabo-
ration interface, which is essential in OAS and at the same time allowing
one concrete truck to implement only leader, only follower or even both
roles. Furthermore, the role abstraction helps keeping the development
focus on the platooning domain instead of drifting into technical details
too much.

Considering the overall platooning function, all input values that need to
be measured and all output values that will be actuated are known at this
point. In order to be able to deploy the platooning sub functions to roles
in an optimal way, knowledge about the probable source of input values
is needed, e.g. the speed value of the leader role will likely be originating
from the leader truck eventually. In a role and configuration analysis,
assumptions have to be made about source and sink roles of input and
output values. This information can be generated by looking at existing
state-of-the-practice/state-of-the-art sensors and actuators. Since nowa-
days, there exist a lot of truck variants with highly varying hardware con-
figurations, one challenge faced in this thesis was thus to pre-engineer a
decent set of role hardware configurations that can be found in today’s
trucks to enable the platooning scenario for as many trucks as possible.

As soon as the origin roles of functional input values are determined, the
functions can be deployed to roles. The possibility of communication be-
tween leader and follower allows for great flexibility in deployment, be-

32

Solution overview

cause a value can be e.g. measured at the leader but used at the follower
after communication happened. Thus, strategies needed to be developed
that allow an optimal function deployment with respect to certain crite-
ria like communication medium occupation and more important that the
deployment can be carried out systematically. This was solved by starting
at the platooning function inputs and traversing along the signal propa-
gation paths, while deciding for each function based on a set of heuristics
to which role they have to be deployed.

Having deployed functions to roles, the collaboration interface is suffi-
ciently defined, i.e. which information has to be communicated how of-
ten from which source role to which target role. Every information that
is passing the collaboration interface in this way can be formalized in
terms of services as defined in Section 2.1.3. The communication direc-
tion indicates, which role needs to provide or require a certain service.
The service derivation has to be carried out for all supported collabora-
tion configurations. As described in Section 2.2, the definition of provided
and required services between roles is not sufficient in order to ensure
a safe overall collaboration. Even if all required services of all roles are
matched by provided services of other roles, this only ensures the safe
nominal behavior for each role, but not for the whole collaboration itself.
Therefore, it is required to have one function that is responsible for pro-
viding the application service, namely a safe platooning collaboration, to
the truck drivers. This means this function has to guarantee that all safe
conditions are met during truck platooning. Finding a reasonable choice
for the assignment of the application service has been another challenge
for the safe nominal behavior specification. Having service and function
descriptions as well as their deployments to roles documented in terms of
a collaboration service architecture, truck manufacturers could in prin-
ciple take this documentation and implement a certain role for an existing
or new truck according to classical system development methods. To this
end, the truck manufacturer only has to adhere to the service interface
that has been assigned to the role(s) to be implemented. Note that a mod-
ernly equipped truck could in principle implement multiple configurations
of a role at the same time, which increases chances that it will eventually
find another truck at integration time (=on the highway) matching one of
its service interfaces.

In summary, a safe nominal behavior specification in the shape of a collab-
oration service architecture enables the implementation of different col-
laboration roles in isolation, while still guaranteeing a safe overall collab-
oration at the runtime integration. However, the safe nominal behavior
specification does not explicitly take into account possible random hard-
ware or systematic software failures yet. Thus, additional activities have to
be carried out to guarantee a safe collaboration also in the presence of
service failures, which are addressed by ConSerts and exemplified in the
next section.

33

Solution big picture

3.2.2 Safe fail behavior specification

Based on a safe nominal behavior specification, this section exemplifies the
challenges that appeared during the activities in order to construct a safe
fail behavior for the truck platooning scenario (Thesis goal 2). Figure 3.4
shows the activities that need to be carried out to produce a formal Con-
Sert model having a properly defined service architecture of the intended
collaboration as input product. The terminology and concepts of the Con-
Sert approach that will be used in this section have been introduced in
detail in Section 2.2.

Figure 3.4: Safe fail behavior specification – Activities overview

The given collaboration service architecture contains a hierarchical struc-
ture of services where the top-most element is the application service that
is provided to human-being(s) and has been allocated to be provided by
a specific collaboration role. In order to assure that the application service
can be delivered safely certain services have to be provided from collabora-
tion roles correctly that might themselves demand correct service delivery
from other roles. The first challenge in this respect has been to analyze
which types of service failures may occur for any given service so that the
application service cannot be provided properly anymore. The related ac-
tivity for achieving this goal is the service safety analysis. Note that this
analysis focuses only on service failures occurring at the collaboration in-
terface between roles and does not try to identify the causes for these
failures within the internal functional specification of the roles. In terms of
truck platooning, consider the follower role is requiring a service from the
leader role containing a continuous provision of the leader’s current speed.
If the follower role receives a wrong speed value for different reasons be
it timing, value or provision failure, it can only react to that value as it is
perceiving it and thus it is irrelevant from this black box perspective, how
the erroneous speed value was caused within the system implementing
the leader role.

While the service safety analysis is focusing on the activity of system-
atically collecting possible service failures, the main challenge of the
safety property type definition is to enrich the functional service de-
scriptions with their possible service failures in a more extensive way.
This includes the documentation of the potential deviations from correct
service as well as their effects on the concrete collaboration. Considering
the leader speed provision service example, a “value too low” failure
could be characterized with the deviation “The provided speed value is

34

Solution overview

more than x m
s lower than the actual leader truck’s speed” which could

potentially have the effect that “The maintained distance between leader
and follower truck is unsafe”.

Since the system under development should eventually prevent the effects
specified within the safety property types from happening, the negation
of the safety property types directly represents safety requirements the
system has to fulfill. From the perspective of a role using a service that
means that it can only react safely to a failure, if the bounds of the service
failure’s potential deviation from correct service are explicitly quantified.
This matches the common understanding that well-written requirements
should always be testable, which is highly supported by a quantification
of the requirement. Based on this safety property quantification, fault
tolerance mechanisms can be eventually implemented. The determination
of reasonable bounds for deviations has been a tough challenge in the
course of this thesis, because the effects of one deviation or even a com-
bination of multiple simultaneous deviations on the collaboration’s safety
are hard to judge without concrete evidence in today’s complex systems.
During platooning for instance, it is not directly clear, how much additional
distance is needed between both trucks to compensate for a leader speed
value being 5m

s too low. The fact that the effects need to be known for
complete ranges of deviations, makes the situation even more complex.
Thus, in order to come up with reasonable bounds for the specification
of service safety properties, a simulative approach has been carried out
in this thesis. To that end, a Matlab/Simulink model has been created for
the platooning scenario that enables the failure injection at the service
level. Based on batch simulations of different service failure combinations,
an informed decision can be taken with respect to the trade-off between
tolerated deviation ranges and their cost in terms of performance losses.
With respect to platooning, this means that by tolerating a higher speed
value deviation, the additional distance that is needed between the trucks
for still maintaining a safe collaboration, is a performance loss, because a
higher amount of fuel is needed for the follower truck.

Having augmented the services with quantified safety properties, a
collaboration safety concept has to be created that includes a sound
reasoning for the fulfillment of the top-most safety goal, namely that a
frontal crash between follower and leader truck must be prevented during
platooning. The main challenge within this thesis that arose from this task
was to find a structure for the safety concept that can be systematically
derived from existing artifacts and that can be reused for similar service-
based OAS. Starting at the application service, the service hierarchy has
to be traversed top-down. On the one hand, an argument needs to be
provided for each role that the safety properties of its provided services are
guaranteed under the assumption that its safety demands towards other
roles are fulfilled. On the other hand, the collaboration safety concept
needs to assure that if all safety demands of all roles are fulfilled, the
application service can be guaranteed in a sufficiently safe way as well.

35

Solution big picture

In summary, each role provides certain services within the collaboration
that have to guarantee quantified safety properties. In order to provide
these services with the desired quality, the role may also require ser-
vices from other roles while demanding specific bounds for the maxi-
mum deviation of correct service. This information is finally compiled into
ConSert models, which contain a machine-readable representation of
both demands and guarantees for a specific role within a collaboration.
Within the truck platooning scenario it can be assumed that both trucks
implement the follower and the leader role. Based on the concrete con-
figurations of the trucks, there exist thus at least two associated ConSerts
for each truck, describing the provided/required services when acting as
leader or follower. Prior to building a platoon on the highway, both trucks
evaluate their ConSerts hierarchically starting in the application service and
if all required services of both roles find a matching service provision with
sufficient quality, a safe platooning collaboration can be assured.

Since a ConSert for a specific role can have multiple guarantees for a single
service differing in the strictness of the guaranteed deviation bounds from
nominal behavior, it is possible to increase the chances that demands from
other collaboration partners can be matched successfully at runtime. In
a platooning scenario, multiple guarantees allow collaborations between
more truck variants differing in their configurations, which means that
even older trucks with a limited amount of deployed sensors could collabo-
rate together. However, less rigorous safety guarantees consequently lead
to more conservative worst-case behavior and thus the performance is
worse, i.e. the inter-truck distance must be increased. In this way, ConSerts
are an appropriate means for enabling a dynamic adaptation in changing
runtime contexts.

36

4 Engineering safe nominal behavior

This chapter presents the series of activities that need to be carried out
for the construction of a safe nominal behavior specification. It is struc-
tured according to Figure 4.1, which represents the sequence in which
the activities have to be performed in reality. Each of the sections will be
subdivided into two parts, where the first part describes the activities and
concepts for OAS collaborations in general, whereas in the second part
these concepts are applied explicitly to the truck platooning collaboration.

Figure 4.1: Safe nominal behavior construction – Chapter structure

4.1 Preliminary hazard and risk analysis

The first activity that has to be carried out to engineer a safe nominal
behavior specification is the exploration of possible accidents for the pla-
tooning collaboration as well as their causes. As it has been outlined in
Section 3.2.1, the goal of the preliminary hazard and risk analysis is to
find hazards and accidents that have their cause in the intended function-
ality rather than in failures. These hazards and accidents are needed to
construct a safe functional behavior during the absence of hardware or
software failures.

4.1.1 Problems of conventional HARA for OAS

Initially, we tried to apply known hazard and risk analysis (HARA) tech-
niques for truck platooning such as the one required by the ISO 26262
standard [27] where accidents and their potential causes are systemati-
cally collected in the shape of hazardous events (combination of a hazard
and an operational situation). A fundamental assumption of this approach
is that the considered hazards are unintended system behaviors, so-called
malfunctions, which are deviations from the specified intended function-
ality of a system. Furthermore, it is assumed that a system is safe, if the
risk of the relevant hazards is confined to an acceptable level by the ap-

37

Preliminary hazard and risk analysis

propriate use of safety measures. Both assumptions sufficiently cover the
prevention of accidents that are caused by behavioral deviations due to
the occurrence of systematic software or random hardware failures within
a system.

However, when trying to systematically determine malfunctions and their
hazards for a collaboration of OAS, there appear two problems:

1. It is hard to clearly determine, if a behavior of an OAS is malfunctioning
and thus safety-critical for the collaboration without considering the
combination of behaviors of all other participating OAS, too.

2. The exploration of potential hazardous events does not only require
the examination of behaviors and states of all collaborating OAS and
the general environmental situation, but also their effects on the over-
all collaboration state. A systematic determination of a complete set
of hazardous events is already a non-trivial task for closed systems and
thus the extension of the scope to OAS collaborations leads to a com-
binatorial problem, when combining vehicle behaviors, vehicle states
with possible environmental situations.

Figure 4.2: HARA scope single systems vs. OAS collaborations

Both of these problems are visualized in Figure 4.2: At the top, the situ-
ation is shown for a closed system like a conventional vehicle. A typical
hazardous event in this case could be “an unintended acceleration ma-
neuver on highway at speeds greater than 80 km/h”, which may lead to
an accident with other road users. Obviously, it is clear within the scope of
a single vehicle that a sudden acceleration on the highway at high speeds

38

Engineering safe nominal behavior

is dangerous and needs to be avoided. However, if a vehicle is partici-
pating as follower in a platoon (bottom of Figure 4.2), it is necessary to
include the potential behaviors and the state of the leader vehicle as well.
If for instance the leader truck is currently accelerating, an acceleration of
the follower is not safety-critical but even required to maintain a constant
separation. Thus, it is of high importance to see which effects a certain be-
havior has on the overall collaboration state to judge if it is safety-critical.

Due to the highlighted difficulties in evaluating the behaviors and states
of all single OAS, the approach taken in this thesis is to focus on the over-
all collaboration only and ensure by design that dangerous collaboration
states are excluded. In this way, we first have to find the accidents that
should be avoided and subsequently determine those collaboration states
leading to the accidents. According to Section 2.3.2, the only relevant
accident that has to be considered for the running example is a frontal
crash between follower and leader truck, since cut-in situations and lat-
eral movements of any truck have been ruled out as a prerequisite in this
thesis. Such a frontal crash can be caused by two scenarios:

1. The leader truck driver performs an emergency braking maneuver and
the follower truck’s full braking action is inadequate to prevent a frontal
crash.

2. The follower truck accelerates to a higher speed than the leader truck
and constantly keeps that higher speed until a crash occurs.

The essential difference between the scenarios is that the first scenario can
be expected within a platoon as part of the intended functionality, while
the second scenario cannot. It can always happen during platoon driving
that the leader driver has to perform an emergency braking maneuver to
which the autonomously driven follower truck has to react. The second
scenario on the other hand contains an exceptional situation, because the
goal of platoon driving is to maintain a certain distance, which is only
possible when both trucks have the same speed. Thus, the scenario con-
tains a follower truck behavior that deviates from its intended behavior
and therefore does not need to be considered for the specification of the
collaboration’s nominal behavior. For this reason, we will only consider the
first scenario in the following.

4.1.2 Platooning safe condition derivation

A suitable candidate for characterizing a platoon’s collaboration state is
its state of motion, more specifically the inter-truck distance d and the
relative speed vrel = vleader−vfollower between leader and follower truck.
This means that the collaboration state might change as soon as distance
or relative speed are influenced by acceleration or braking maneuvers of
leader or follower. As stated above, the desired steady-state value for the
relative speed in a platoon should be zero, so the only variable left for

39

Preliminary hazard and risk analysis

modifying the collaboration state is the inter-truck distance. However, the
distance can physically only be influenced by increasing or decreasing the
relative speed, but this should only happen temporarily and thus does not
clash with the general requirement that both platoon trucks should have
the same speed during steady-state platooning.

Figure 4.3: Safe distance visualization

Having chosen the truck separation as the physical variable representing
the collaboration state, it is necessary to analyze the distance value range
with respect to safety, i.e. which distances may lead to a crash and which
are safe. Considering the emergency braking scenario introduced above,
Figure 4.3 shows two situations of a platoon at the beginning of an emer-
gency braking maneuver initiated by the leader truck. The white arrows
indicate the traveled distances sbrake,L and sstop,F of both trucks at the
moment where the trucks finally come to a stop, while the inter-truck dis-
tance d is the current distance immediately before the emergency braking
maneuver starts. Note that the stop distance is defined as the sum of reac-
tion distance and braking distance. From the point of view of the follower
truck that needs to react to the braking leader, we need to explicitly con-
sider its reaction distance, because during the reaction time, no follower
braking happens, i.e. the inter-truck distance d is decreased. In contrast,
the reaction time and distance of the leader truck is irrelevant since it is as-
sumed that the follower’s reaction time starts only at the moment, where
a leader deceleration is perceivable for the follower.

Having introduced the required physical variables, we want to derive a
physical safe condition that guarantees the avoidance of a crash, if evalu-
ated to true. The upper part of Figure 4.3 therefore delineates a situation,

40

Engineering safe nominal behavior

where a crash will occur, because the stand-still point of the follower’s
front end is in front of the stand-still point of the leader’s tail end, i.e. the
follower truck is located inside the geometry of the leader truck (=crash).
This crash can be avoided if the red indicated distance is added to d before
the braking maneuver is started, which results in the follower stopping
short of the leader (bottom of Figure 4.3). The distance needed to prevent
a frontal crash will be called safe distance dsafe and is defined as:

dsafe = sstop,F − sbrake,L Safe distance definition

The safe distance value splits the inter-truck distance value range in two
sets, a safe and an unsafe one. Obviously, all distances that are greater
than the safe distance will also be safe and we can thus formulate the
safe condition for truck platooning as:

d ≥ dsafe Platooning safe condition

Figure 4.4 summarizes the states of the platooning collaboration in a state
machine. The Safe Platooning state represents all inter-truck distances d,
where the safe condition is met, while the Unsafe Platooning state reflects
its violation. Because of the fact that both sbrake,L and sstop,F are highly

Figure 4.4: Platooning collaboration states

influenced by dynamically changing environmental and truck parameters,
it is possible that dsafe changes as soon as one of the influential parame-
ters changes. This would mean that if the platoon exactly maintains dsafe,
there is no possibility to react to parameter changes without ending up
in the unsafe state. Thus, the solution is to subdivide the Safe Platooning
state in two sub states Normal following and Distance correction, where
the former describes steady-state platooning while the latter reflects the
temporary state where a higher distance set-point has to be realized. In
order to perform distance adjustments in a safe way, it is necessary to
maintain a higher distance than dsafe. The derivation of the exact value

41

Functional decomposition

of this additional distance dreact is out of this thesis’ scope, because it is
mainly dependent on how fast a specific controller design can realize a
new distance set point, which is a problem located in the control theory
area. For the sake of simplicity, dreact will be assumed to be a constant
value representing a worst-case estimation.

The eventual goal of all further activities in Chapter 4 will be to make sure
by construction that the safe condition will always be met, provided that
no systematic software or random hardware failures occur.

4.2 Functional decomposition

This section describes the functional decomposition of the platooning sys-
tem based on the safe condition, i.e. to find the physical quantities, which
need to be measured to determine the safe distance dsafe and how a
given distance set-point d can be realized for a platoon.

4.2.1 Decomposition strategy

Figure 4.5 shows the initial functional model of the platooning system.
Safe Distance Computation is the function on which the subsequent de-
composition activities will be based on. From a functional perspective, its
responsibility is to compute a safe distance set-point for the platoon by
requiring follower stop distance and leader brake distance to be provided.
Note that this function directly reflects the Platooning safe condition de-
fined in Section 4.1.

Figure 4.5: Initial functional model of the platooning system

Traditionally, the functional decomposition of a system is carried out until
the behaviors of resulting sub functions can be expressed mathematically
so that they can be directly implemented in code. However, the goal of

42

Engineering safe nominal behavior

the decomposition in this section is different: We are only interested in the
information which physical quantities the system needs to measure and
actuate rather than how their exact formal relation to each other looks
like. With two actual systems (follower and leader trucks) building the pla-
toon, it is necessary to decide which functions shall be deployed to which
truck. The fundamental idea of this thesis to make reasonable deployment
decisions is to look at source and sink locations for system input and out-
put variables. Thus, the platooning system has to be refined to the point
where those basic physical properties needed to enable the collaboration
in first place are known. Concretely, we need to determine on the one
hand those physical input variables that allow a computation of follower
stop distance and leader brake distance and on the other hand the out-
put variables that enable a realization of a distance set-point computed by
Safe Distance Computation.

The strategy that shall be used for the decomposition of the platooning
system is referred to as superposition or horizontal refinement [30]. Its
main difference to conventional decomposition strategies is that the de-
composition does not start at the system output variables and proceeds
against the signal flow. Rather, the horizontal refinement starts at some
intermediate function (i.e. Safe Distance Computation) and refines in two
directions, first against the signal flow until concrete input variables are
determined and second along the signal flow until the system output vari-
ables are known.

4.2.2 Platooning system decomposition

This section shows how the platooning system is decomposed by making
use of the horizontal refinement strategy starting at the inputs and out-
puts of the Safe Distance Computation function depicted in Figure 4.5.

Backward refinement towards system inputs

The follower stop distance sstop,F and the leader brake distance sbrake,L
are the physical quantities that have to be refined against the signal flow
of the platooning system. The reason for a refinement is that both quan-
tities are influenced by various other physical quantities and can therefore
not be measured directly. In general, the brake distance is a sub quantity of
the stop distance and thus their refinement includes the same considera-
tions. In order to understand their relation, Figure 4.6 shows the graphs of
applied brake force, speed and traveled distance in the different temporal
phases of a typical braking process.

The braking process of a truck can be subdivided in three parts:

Reaction phase tR The reaction phase comprises the time span from the
recognition of a danger until the actuation start of the brake system.
For human drivers, tR is highly dependent on the driver’s skill and vigi-

43

Functional decomposition

Figure 4.6: Temporal braking process (adapted based on [31, p. 113])

lance, while for autonomous systems, it is mainly determined by signal
propagation and processing times until the brake is actuated. In both
cases, no deceleration happens and the vehicle continues with its cur-
rent speed v0.

Dwell phase tA + tS The dwell phase comprises on the one hand the
brake response time tA, during which still no deceleration happens, be-
cause clearances within the brake system mechanics need to be over-
come before any braking force can be exerted. On the other hand, the
dwell phase contains the brake’s dwell time tS where the transferred
brake force is increased until the maximum possible force. For the sake
of simplicity, the brake force increase is assumed to be linear, although
in general this might not be the case.

Brake phase tB During the brake phase, the maximum available brake
force is constantly applied until the vehicle comes to a stand-still (v = 0).

Having introduced the consecutive phases during the deceleration pro-
cess, we can define the stop distance as the sum of traveled distances of
all three phases, while the brake distance explicitly excludes the distance
traveled during the reaction phase.

sstop = s(tR + tA + tS + tB) Stop distance definition

sbrake = sstop − s(tR) Brake distance definition

44

Engineering safe nominal behavior

With respect to platoon driving it makes sense to exclude the leader’s
reaction distance from the considerations, because the reaction time of
the follower truck only starts as soon as leader braking is for the first time
observable for the follower. Note that this can be the case already at the
start of tA, when the leader truck is able to communicate the brake pedal
activation of its driver.

Based on the outlined brake process, [31] provides a closed form solution
for the computation of the stop distance, if the constant maximum decel-
eration Dmax, initial speed v0 and characteristic values for tR,tA and tS
are given. The used braking model assumes that the applied brake force
is proportional to the deceleration of the vehicle according to Newton’s
second law of motion F = m · a. However, this assumption is too restric-
tive for the running example, because it neglects requirements that are
demanded for realistic truck platooning (see Section 3.1), e.g. the consid-
eration of the non-linear air drag or parameters for road conditions and
truck characteristics, which turn the resulting vehicle deceleration into a
non-linear quantity.

As mentioned before, the mathematical derivation of an explicit stop dis-
tance solution is not necessary at this point, because we only need to
determine the system input variables1. Therefore, Figure 4.7 gives a qual-
itative overview showing which basic physical quantities have an impact
on the stop distance. This knowledge is sufficient for creating black-box
functions where only the inputs and outputs need to be known.

Figure 4.7: Physical quantities influencing the stop distance of a vehicle

All vertically annotated quantities are either dynamic variables that can
be measured or determined by state-of-the-art or production sensors
(tcom, v, µ, q) or they are parameters that are assumed to be static, at
least for a certain driving distance (tproc, cwA,m, fR, λm, Fb,max, tA, tS).

1The interested reader will find the mathematical derivation in Section 5.2.2, where it is finally re-
quired to build a simulation model.

45

Functional decomposition

Thus, the system inputs for the platooning system are clearly determined
and the refinement in this direction is complete. The only missing task is
the instantiation of the determined basic physical quantities for the leader
brake distance sbrake,L and the follower stop distance sstop,F . The result-
ing functional model is shown on the left side of Figure 4.8.

Forward refinement towards system outputs

The refinement along the signal flow direction towards the system outputs
(=actuated quantities) starts at the distance set-point output of the Safe
Distance Computation function (see Figure 4.5). As mentioned earlier, the
inter-truck distance can be influenced by a temporary change of the rela-
tive speed of the trucks, which can be realized by either an acceleration or
deceleration of leader or follower truck. Within the platooning scenario,
the follower truck is the one that autonomously reacts to driving maneu-
vers of the leader’s human driver. Thus, the physical quantity that must be
actuated by the platooning system is the follower truck’s de-/acceleration.
Being aware of the fact that deceleration and acceleration set points are
typically realized by two different vehicle sub systems (brake and engine,
respectively), we will nevertheless only use one system output acceleration,
because first, this distinction is not relevant for the further considerations
of this thesis and second, decelerations are from a physical perspective
negative accelerations only.

Since the realization of a distance set-point is a typical control problem
that has been extensively investigated in the area of adaptive cruise con-
trol (ACC) and similar advanced driver assistance systems (ADAS), a well-
documented controller design from [32, p. 872 ff.] shall be reused in this
thesis. In order to provide an acceleration set-point that is able to control
on the one hand a specific distance set-point and on the other hand a rel-
ative speed of zero among the trucks, the current speeds of both trucks as
well as the current distance between the trucks are needed as inputs for
the controller. Note that the set-point for the relative speed stems from the
fact that normal platoon driving demands both trucks to have the same
speed. Since the speeds of the trucks have already been added as system
inputs as part of the backward refinement, the only additionally needed
system input is the current inter-truck distance d.

At this point, the horizontal refinement of the platooning system is com-
plete. The final functional model is shown in Figure 4.8. On its left side,
two functions Follower Stop Distance Determination and Leader Brake
Distance Determination are given as a result of the backward refinement
starting at the Safe Distance Computation, while the forward refinement
yielded the Distance Realization function. Its output, namely the accelera-
tion set point for the follower truck is the system output for the Platooning
System, too. Note that the port labels end with “(F)”, when a certain sig-
nal is related to the follower truck, while “(L)” indicates an association to
the leader truck.

46

Engineering safe nominal behavior

Figure 4.8: Final functional model of the platooning system

4.3 Role and configuration analysis

This section deals with an exploration of typical truck variants with respect
to different types of variabilities, which have an influence on the func-
tion deployment and thus on the resulting service architecture as well. In
order to cover truck variants in the context of a collaboration in a formal-

47

Role and configuration analysis

ized way, the concept of roles and configurations will be first explained in
Section 4.3.1. Afterwards, Sections 4.3.2 and 4.3.3 analyze the variants
explicitly for truck platooning.

4.3.1 Role and configuration concept

In order to address variability on the collaboration level without consid-
ering concrete truck designs, an abstraction of the truck as a whole is
necessary covering only that information which is relevant for the collabo-
ration. A given truck can in principle support both the leader and follower
roles during platooning, i.e. it can switch between the roles depending
on its own and the collaboration partner’s capabilities. Since the required
functionality for the platooning collaboration is very different with respect
to different roles, it is meaningful to use the collaboration role as a princi-
pal means for abstraction instead of directly dealing with the whole com-
plexity of a given truck. On the basis of role definitions, it is possible to
specify variants that may occur for a specific role by using so-called con-
figurations. A configuration is mainly defined by its interface in shape of
provided and required services (see Section 2.2.2) and the service interface
will eventually result from a specific function deployment.

Figure 4.9: Variability support through roles and configurations

Figure 4.9 exemplifies the problem from the point of view of a truck man-
ufacturer who wants to make an existing truck model platoon-ready. The
arrows represent a deployment of a certain function and different arrow
colors mean different possible variants. Given only the functional model
as defined in the previous section, the manufacturer has to answer the
following questions:

48

Engineering safe nominal behavior

1. Should the truck be able to act only as follower or leader or even both
roles?

2. Which functions need to be realized to support a certain role?

3. Is the current hardware equipment of the truck sufficient for platooning
and if this is not the case, is there the possibility of choosing between
variants for which safe platooning is guaranteed?

Without a clear structure that covers variability information on the collab-
oration level, it will be hardly possible to answer those questions (Fig. 4.9,
left side). However, if several configurations for both roles have been pre-
engineered based on common knowledge on typical variabilities and if the
pre-engineered configurations have been explicitly certified with respect
to safety, the manufacturer is very flexible in choosing a set of supported
role configurations that fits best the existing truck design as well as the
business goals of the company (Fig. 4.9, right side).

4.3.2 Platooning configuration analysis

Having introduced a concept for covering variability by means of roles and
configurations, this section explains, which variability types exist and how
to come up with a set of meaningful pre-engineered configurations.

A major result of the functional decomposition has been the knowledge
about system inputs and outputs that are needed to enable a safe pla-
tooning collaboration. Thus, when deriving potential configurations for
both follower and leader roles, an important consideration is on the one
hand whether the required system inputs can be measured by existing
sensors and on the other hand whether there are actuators that allow the
realization of the system outputs. In this way, the first identified variabil-
ity is the general availability of software/hardware within a truck for
measurement and actuation. For the truck platooning scenario, the avail-
ability of an actuation mechanism, i.e. the realization of de-/accelerations,
is clear since the presence of both engine and brake systems is a hard re-
quirement for every meaningful truck operation. It is also clear that the
actuation will be carried out on the follower truck, since the follower is
the autonomous system during platoon driving. Thus, we will mainly con-
sider in the following the availability of sensors that can explicitly support
truck platooning in any way. Note that also software availability has been
mentioned, because first, modern sensors typically contain software for
post-processing measured raw data and second, software can be used for
the determination of physical quantities that are hard or impossible to be
measured directly by applying sensor fusion on the software level.

After having knowledge on the potential availability of physical quantities,
the second type of variability is the set of value characteristics that a
sensor is able to deliver:

49

Role and configuration analysis

Value accuracy The accuracy indicates, how accurate a measurement re-
flects the real physical value. Due to the used measurement principle,
environmental noise, analog-digital conversion and other factors, there
is always a certain error with respect to the real value. The maximum
error and thus the lower and higher bounds of a value are determined
through extensive testing and are therefore known for a specific sensor.

Value range The value range that a sensor can cover for a physical quan-
tity. Depending on the usage scenario, only subsets of value ranges are
required.

Value resolution The value resolution or quantization determines the
distance between to subsequent possible values. Measurements falling
in between two of these values have to be mapped to either of them,
which is typically done by choosing the nearest possible value. Note that
a certain value resolution also affects the value accuracy.

Based on the discussed variabilities, it is necessary to have a look at sensors
that typical modern trucks are equipped with, but also measurement prin-
ciples and sensor concepts that fall within the state of the art. The idea for
pre-engineering potential configurations is to use the acquired knowledge
and derive sensor deployments that are likely to occur and explicitly sup-
port platooning. In this way, it is possible to offer configurations ranging
from trucks having a comprehensive sensor set to trucks with minimum
sensing capabilities. The inclusion of state-of-the-art sensors even enables
the support for sensor deployments that are not on the market yet and
thus also give a guidance where further research is still required.

Figure 4.10: Platooning sensor deployment analysis

Figure 4.10 shows the sensors that have been found as result of a liter-
ature and market research. Note that the figure only shows some typical

50

Engineering safe nominal behavior

representatives of the actually available sensors to illustrate the concept
and therefore does not claim completeness of any kind. The depicted sen-
sors mainly focus on those physical system inputs of the platooning system
(see Figure 4.8) characterizing the collaboration and its environment (inter-
truck distance d, relative speed vF − vL, road slope q, road friction µ). In
contrast, the other required system inputs are either fixed parameters or
physical quantities that relate to a single truck only. Thus, it can be as-
sumed that these values are available in the respective truck. By having
a look at the different kinds of presented radar sensors [32, p. 300f.],
it can be observed that these are already used in production, either in
adaptive cruise control systems (ACC) or for low speed ranging. This is no
surprise since ACC is similar to truck platooning, but is constrained to sin-
gle following vehicles and thus lacks of V2V communication. Concerning
front vs. rear radars it is interesting to note that the rear radar has a higher
value resolution for the distance measurements, which is beneficial for pla-
tooning. From the platooning perspective, the radar sensors should mainly
measure the inter-truck distance and therefore it does not make sense to
consider a front radar on the leader truck. GPS sensors typically deliver only
the vehicle’s position and the vehicle’s speed, but [33] correlated the GPS
data with vehicle internal data to estimate both vehicle mass and the road
slope with good accuracy. Note that environment characteristics like the
road slope are fixed for a certain position and thus this information could
be retrieved by precise high-resolution maps as well. Without a commu-
nication transceiver on both trucks, V2V communication and thus collab-
orations are impossible. Since the Dedicated Short Range Communication
(DSRC) standard [9, 11] explicitly addresses V2X communication, it can be
considered as a reference protocol stack for automotive collaborations in
general. Note that the DSRC transceiver delivers also relevant values like
GPS position, speed or acceleration values in addition to mere communi-
cation infrastructure. This stems from the fact that these values are part
of the standardized basic message that has to be provided by a vehicle
using DSRC (see [10, 12] for more details on basic message sets). Another
physical quantity that is in particular difficult to determine accurately is the
road friction that is highly relevant for safe platooning, because it has a
major impact on the stop distance. Continental developed a sensor fusion
concept that allows the estimation of weather conditions and their impact
on road friction until 100m ahead of a vehicle [34].

4.3.3 Platooning configuration selection

Based on the gathered knowledge on both sensors being used in produc-
tion and sensor concepts falling known in the state-of-the-art, different
configurations can be built for the leader and follower roles. When com-
bining different sensor/actuator deployments for leader and follower it
is of essential importance that all system inputs and outputs of the pla-
tooning system are covered. In realistic settings, a high number of sensor
deployment combinations can be built and this number is even increased

51

Role and configuration analysis

when additionally considering the sensor value characteristics. Therefore
the goal is not to provide a configuration for each possible scenario, but
to choose the most probable and meaningful scenarios with respect to
platooning. Since this choice highly depends on expert knowledge and
involves negotiation among the companies of a domain, this thesis picks
two random configurations for each role being capable of illustrating the
further described concepts, namely how different configurations can yield
different function deployments and therefore different service interfaces.

Figure 4.11: Platooning roles and their configurations

Figure 4.11 shows the chosen truck configurations for both follower and
leader roles. A scenario exemplified for instance by S1 or S2 of Figure 4.11
is a combination of exactly one follower and one leader configuration.
As stated above, platooning can only be realized successfully for a certain
scenario, if all system inputs and outputs are covered. This is for example
not the case for the combination of configurations F2 and L1, since the
road friction µ and the road inclination q are not available. In contrast, the
scenario F1-L2 would enable platooning with very good performance, be-
cause a lot of redundancy is given. Since the consideration of all possible
scenarios does not yield new insights, only scenarios S1 and S2 shall be
considered in the following. From a practical point of view, it is on the
one hand necessary to provide configurations for each role that cover a
high range of potential truck variants. On the other hand, it is equally im-
portant to create configurations for both roles that can successfully realize
platooning together.

In all configurations, the depicted platooning-specific sensors are anno-
tated with those quantities that they can provide, while the annotation of

52

Engineering safe nominal behavior

quantities inside the truck boundaries are assumed to be provided by the
truck platform itself. Scenario 1 can be characterized by a follower truck
that is equipped with a modern sensor set, while the leader truck only has
minimal sensing capabilities. In scenario 2, the situation is inversed except
that we have redundancy capabilities with respect to the measurement of
the distance d and the relative speed vrel. In this way, redundancies can
be used for plausibility checks to deliver accuracy improvements leading
to better functional performance during collaboration. Another aspect for
the selection of configurations can be the cost of components. A mid-
range front radar is likely to be cheaper than a long-range front radar,
although both measure the same quantities, but with differing accuracies.
Thus, it is necessary to quantify the impact of such a choice, because a
more accurate sensor will lead to a smaller possible inter-truck distance
during platooning, which in turn improves the saved fuel due to aerody-
namic drag reduction.

4.4 Function deployment

Taking the functional model of Section 4.2 as a starting point, the role
and configuration analysis delivered variants for both follower and leader
roles by linking the system inputs and outputs of the platooning system
to the respective roles based on combined variants of available sensors.
A prerequisite for defining the service interface completely is to look at
different possible scenarios separately, i.e. specific combinations of leader
and follower configurations and to deploy the platooning system’s inner
functions to the respective roles. This is in particular important for a truck
manufacturer who wants to realize a certain role configuration, since the
deployment of a function to a configuration forces the manufacturer to
implement that functionality, which is in the first place a cost factor. Ob-
viously, the decision for a deployment of an inner function to one or the
other role should not be at random, but rather follow a dedicated strategy.
Another desirable goal is that the deployment can be carried out systemat-
ically so that this process can be supported by tools in a (semi-)automatic
way. In this way, Section 4.4.1 explains a systematic strategy for func-
tion deployment that makes use of a set of heuristics. Afterwards, Sec-
tion 4.4.2 applies these heuristics to the two platooning scenarios created
in Section 4.3.3.

4.4.1 Deployment strategy

The function deployment can be considered as an optimization problem
whose solution should represent an optimal distribution of the inner func-
tions of a system among the available collaboration roles. A challenge in
this respect has been to find the criteria that characterize an optimal solu-
tion for the given problem. Logically this requires to start with an exami-
nation of the effects of certain deployments on the overall collaboration.

53

Function deployment

A distribution of related functions to different roles inevitably yields sig-
nal flows between roles, which will manifest themselves as provided and
required services, since a role is implemented by exactly one OAS and can-
not be spread over multiple OAS. Hence, the deployment has an impact
on the number of services and therefore on the amount of data that has
to be exchanged between the collaborating OAS, too. In general, it can
be stated that the more equal the distribution of functions over the partic-
ipating roles is chosen, the higher the number of resulting services will be.
Put differently, if a single role realized the majority of functions, it would
have maximum context knowledge and the dependencies to other roles
would be minimal, which represents the ideal case. However, the essential
nature of collaborating OAS is that their (different) capabilities are com-
bined to a new behavior and this combination is only possible through
services. Therefore, services cannot be avoided per se, but it is nonethe-
less desirable to have roles with maximum and minimum responsibilities.
Apart from this collaboration-level consideration, the existence of a service
can be evaluated from a technical perspective, too:

1. The wireless transport of information from source truck to target truck
has a time delay compared to the (typically) closed wired networks like
CAN within a single truck.

2. The wireless communication medium is not exclusively used by the col-
laborating trucks, but also by other road users. Thus, it is harder to
guarantee successful and timely communication, because the commu-
nication medium is dynamically accessed by an unknown number of
vehicles.

3. Compared to a provision of information from the own truck platform,
the external dependency to another OAS through a required service
cannot be as trustworthy with respect to the guaranteed information
quality, because the service provider is not known at design time.

Based on these findings, a reasonable strategy for the deployment is to
minimize the number of services and hence the existing dependencies be-
tween collaborating OAS, too. In addition to the consideration of a service
as an abstract dependency to another OAS, it proved useful to also take
into account whether a service transfers continuous signals or if the car-
ried data is transferred sporadically only, because it changes rarely or not
at all during collaboration. By virtue of their nature, continuous signals are
much more influenced by timing delays than sporadic or static signals. In
addition, they need to be transferred with a high frequency and therefore
stress the communication medium. Thus, the deployment strategy should
prefer services carrying sporadic data over services carrying continuous
data.

The idea of this thesis for performing a systematic function deploy-
ment to roles is to start at the platooning system’s inputs, whose
source roles have already been fixed as part of the configurations
and proceed along the signal flow through the platooning system.

54

Engineering safe nominal behavior

For each visited function, the deployment role is chosen based on a
set of heuristics. As soon as the function’s role is fixed, the system is
further traversed through the function’s outputs. The heuristics com-
pile the above findings about an optimal deployment into rules that
can be decided by examining the count and characteristics of the
function’s inputs and outputs. The process is finished, when all inner
functions have been successfully deployed to a role. The deployment
heuristics for the evaluation of a given function are presented in Table 4.1.

H1 If all function inputs originate from the same role, deploy the function
to that role.

H2 Count the number of continuous inputs for each role. If an input is
available at multiple roles (redundancy), count it for the role delivering
more accurate data. Deploy the function to the role where the majority
of continuous inputs originate from.

H3 If the number of continuous inputs is equal for each role, count the
sporadic inputs for each role. Deploy the function to the role where the
majority of sporadic inputs originate from.

H4 Increase the amount of responsibility of a role, if more than 50% have
been already deployed to that role.

H5 Functions whose responsibility is to directly control an actuator con-
tinuously should be co-located to the actuator and thus be deployed to
the same role that provides the actuation.

H6 If a function could not be deployed clearly with H1-H5, either con-
sider a further vertical refinement of that function into multiple smaller
functions or examine the consequences of a certain deployment with
respect to other quality attributes.

Table 4.1: Function deployment heuristics

4.4.2 Platooning function deployment

This section deals with the practical application of the function deploy-
ment concept that has been presented in the previous section. As input
products, the functional model (Figure 4.8) as well as the role configura-
tion model (Figure 4.11) of the platooning system shall be used. Although
the four given configurations yield three potential collaboration scenarios,
the heuristics are only exemplarily applied to the indicated scenarios S1
and S2. The procedure will be to start at the system inputs and to apply
the heuristics given in Table 4.1 systematically to each function along the
signal flow.

Figure 4.12 shows the functional model annotated with the relevant infor-
mation from both configurations of collaboration scenario 1. On the one
hand, the annotations include a difference in color to show the origina-

55

Function deployment

Figure 4.12: Function deployment – Platooning scenario S1

tion of a specific input or output. Blue inputs are available through truck
platform or sensors of the follower truck, while orange inputs mean the
same for the leader truck. The letters C and S on the other hand indi-
cate whether a certain port is source or target of a continuous or sporadic
signal. Note that the figure already depicts the final result after the de-
ployment; at process begin, only the system inputs and outputs of the
Platooning system function are annotated.

The first examined function is Follower Stop Distance Determination,
whose inputs assume their annotation from their respective system in-
puts through the signal flow. A precondition for most of the heuristics is
to count the amount of continuous inputs for each role. The reason why
the sporadic inputs are excluded from the consideration at first is that
services carrying continuous signals should be avoided in the first place.
Afterwards, the counted input amounts of both roles are compared and
since the given function only has inputs originating at the follower role,
the follower amount of three is obviously higher than the leader amount
of zero and therefore the function is deployed to the follower role accord-
ing to heuristic H2. In order to save the counting process for functions
having only inputs originating from a certain role, heuristic H1 has been
added to be able to directly deploy the function to that role. After the de-
ployment decision has been taken, the outputs of the deployed function

56

Engineering safe nominal behavior

automatically assume the source annotation, i.e. the Stop Distance output
is now originating from the follower and propagates its affiliation again
through the signal flow to the next function Safe Distance Computation.

Since not all inputs of Safe Distance Computation have an annotation and
therefore the heuristics cannot be applied yet, we look at Leader Brake
Distance Determination first. Heuristic H1 does not yield a decision here, so
the inputs have to be counted according to H2. The majority of continuous
inputs originates from the follower and thus the function is also deployed
to the follower. An interesting observation is that although there are eight
leader inputs and only two follower inputs, the function is still deployed
to the follower role. The reason for this decision is that out of those eight
leader inputs, seven of them are carrying sporadic signals that are either
static over the whole collaboration, because they are parameters or only
rarely change.

The Safe Distance Computation function can be clearly deployed to the
follower role due to heuristic H1. In addition, heuristic H4 supports this
choice, because as yet, two out of four inner functions (=50%) have been
already deployed to the follower role. Because of the fact that we strive
for roles with maximum context knowledge, H4 gives an indication with
respect to this goal. Note that H4 should be understood more as a guid-
ance criterion for the engineer than as a definite rule, because the choice
of a role with maximum responsibility could be influenced as well by other
(quality) aspects like safety.

Having three functions deployed to the follower role the last undeployed
function is Distance Realization. Again, heuristics H2 and H4 give a clear
indication for the deployment to the follower, but in addition, heuristic
H5 is valid in this case, too. Since the examined function’s output is di-
rectly the continuous control set-point for brake and engine which both
are deployed to the follower it is in particular important that the function
is deployed to the follower as well. The reason behind this statement is
that the follower actuation is from the system perspective the only pos-
sible means to actively change the collaboration state and hence it is a
functionality that should not be exposed to an additional failure risk due
to external communication through a service.

At this point, all four inner functions have been successfully deployed and
thus the process is finished. The fact that all functions and hence the whole
responsibility have finally been deployed to the follower role is not a co-
incidence. By having a look at the examined collaboration scenario (S1 in
Figure 4.11), it can be observed that the follower truck delivers most of the
required quantities plus the actuation mechanism and it is therefore a rea-
sonable idea to assign the main responsibility to the follower role as well.
For our rather small platooning system, this initial “guess” based on look-
ing at the configurations might lead to the right choice in the end, but if
collaborations are considered that have larger sizes in terms of roles, func-

57

Function deployment

tions and inputs, it is worthwhile to leverage from the presented heuristics
for the substantiation of the engineer’s guesses.

Figure 4.13: Function deployment – Platooning scenario S2

In order to see another example for the heuristic application, Figure 4.13
shows the annotations of the functional model based on the configura-
tions of collaboration scenario S2 (see Figure 4.11). One difference to the
first scenario S1 is that some of the system inputs originate at both roles
due to the redundancy of the sensor deployment. Thus, there is more flex-
ibility during deployment, because although redundant inputs might have
differing accuracies with respect to their signals, there is still the possibility
to choose one over the other for the sake of avoiding newly introduced
services during deployment.

For the Follower Stop Distance Determination function, we chose the fol-
lower origination for the current speed, because the truck-internal speed
value is by far more accurate than a speed value that is computed at the
leader truck by measuring the relative speed and subtracting it from the
leader’s internal speed. In this way, the counting of continuous inputs per
role according to heuristic H2 yields equal amounts. In this case, the spo-
radic inputs are considered, because a deployment based on H2 would
yield the same amount of services. Since only follower sporadic inputs are

58

Engineering safe nominal behavior

existent, the function is deployed to the follower role according to heuris-
tic H3.

In case of Leader Brake Distance Determination, heuristic H2 advocates
that the function should be deployed to the leader role, independent of
how the redundant input current speed is resolved here. In order to avoid
a new service, the leader role is chosen as a source for this input.

Due to the facts that both inputs of Safe Distance Computation have been
deployed to different roles, that there are no sporadic inputs and that
one role does not have more responsibility than the other yet, heuristics
H1-H4 are not applicable. However, what is known is that the Distance
Realization function has – like in the first example – a direct output to
the actuation part of the follower and should thus be deployed to the
follower according to H5. This decision allows maximum flexibility for the
resolution of the input redundancies of Distance Realization. The current
distance and current speed follower’s are chosen to be originating at the
follower role, while the leader’s current speed is chosen to originate at the
leader role for accuracy reasons. Finally, Safe Distance Computation can
be deployed according to heuristic H4, because there is a 2:1 deployment
ratio for the follower role.

In summary, the presented function deployment examples yielded similar
results with respect to the role taking the major responsibility (follower),
but in the second scenario, one function was chosen to be more favorable
to be deployed to the leader role. Based on the results of the deployment,
the next section will explain the resulting service architecture for the pla-
tooning system.

4.5 Service architecture derivation

At this point, all necessary engineering activities have been performed for
the construction of a safe nominal behavior specification for the platoon-
ing system. This section assembles the previous result products into a big
picture – the service architecture. Therefore, Section 4.5.1 explains first,
how a generic service architecture looks like for a collaboration of OAS.
Afterwards, the service architecture for the platooning system will be de-
scribed in Section 4.5.2.

4.5.1 Generic collaboration service architecture

The generic service architecture for OAS collaborations is illustrated in Fig-
ure 4.14. It relates all concepts and artifacts with each other that have
been mentioned in this chapter so far, namely the scenarios and roles of a
collaboration, the configurations of a role, the provided and required ser-
vices of a configuration and the realization of provided services through
deployed functions.

59

Service architecture derivation

Figure 4.14: Generic OAS collaboration service architecture

For a planned collaboration, the overall goal demands that different OAS
being developed in isolation can safely collaborate with each other at run-
time. Since each OAS can only take exactly one collaboration role at a
time, at least as many OAS as required roles are needed for a successful
collaboration.

A role can have multiple different configurations that represent different
pre-engineered variants and thus enable adaptivity due to the possibility to
dynamically switch between configurations during runtime. The covered
variabilities of the pre-engineered variants concern the hardware and soft-
ware platform, i.e. configurations guarantee that the underlying HW/SW
platforms provide different combinations of available physical quantities
and their accuracies. Note that a configuration only sets up requirements
directly targeting physical quantities instead of concrete sensor, actuator
and software designs. Hence, there is still flexibility for the concrete real-
ization of the required accuracies on the implementation level.

The idea for the upfront validation that a collaboration is safe during the
absence of random hardware or systematic software failures is to look

60

Engineering safe nominal behavior

at specific combinations of role configurations, the so-called collaboration
scenarios. Based on the fixed configurations of such a scenario, the overall
collaboration functionality is distributed among the roles. Thus, when two
functions with a signal flow dependency in between are deployed to dif-
ferent roles, the functional dependency is subsequently a dependency be-
tween configurations of different roles. Such inter-role dependencies are
called services, which decouple different roles from each other to enable
their realization in isolation. Note that services are associated to configu-
rations and not to roles, because a role can offer multiple configurations
and a service interface results from a function deployment due to the con-
sideration of a specific configuration. However, the terms role and con-
figuration can be used as synonyms during the consideration of a specific
scenario, because only one configuration can be active at a time for a role.

In this way, a service hierarchy is constructed, in which the required ser-
vices of one role configuration are satisfied by configurations of other roles
(the path of black arrows in Figure 4.14). On the one hand, the hierarchy
ends at configurations that can provide their services without requiring
further services from somewhere else. On the other hand, the top or root
of the service hierarchy consists of provided services that have a special
nature in that they are not providing services to other systems, but to
the stakeholders of the collaboration, which are typically human-beings.
These services are called application services and include more abstract
guarantees, e.g. safe platoon driving for the running example. The main
reason for the explicit definition of application services is the necessity to
assign a responsibility for the collaboration goal achievement to a certain
role. Since safety is always a goal of safety-critical collaborations, the re-
sponsibility assignment is in particular important for safety considerations
as we will see during the definition of ConSerts in Chapter 5. Concerning
the choice of a role guaranteeing the application service, it turned out to
be reasonable to select that role having the highest context knowledge,
which is typically the role being at the top of the service hierarchy.

Given that a collaboration service architecture has been created and doc-
umented on the domain-level including the artifacts described above, it
shall now be described, how an OAS manufacturer can use this informa-
tion to actually implement or extend a system that will be able to success-
fully collaborate with other OAS. The manufacturer has to decide first,
which role(s) his OAS should be able to take. From the role description,
which contains a list of the potential configurations, at least one has to
be selected. A configuration description compiles the following relevant
information:

1. The physical quantities that have to be available in the system with a
specified accuracy.

2. The services that have to be provided with a given accuracy to other
OAS.

61

Service architecture derivation

3. The services that other OAS will provide to the given system (=required
services).

4. The functions that have to be implemented in order to provide the con-
figuration’s services

5. Information on the potential functional performance, when the config-
uration is implemented. Different configurations typically yield different
performances in different collaboration scenarios due to varying capa-
bilities.

The decision for the selection of one or more configurations involves a
trade-off between cost, performance goals and the flexibility to achieve a
successful collaboration with as many other OAS as possible. In order to
achieve this flexibility, the number of implemented configurations must be
increased. In case an existing OAS should be extended to support a new
collaboration type, the existent hardware/software platform also plays an
important role for the configuration selection. An eventual performance
increase has to be critically weighted against the cost of knew hardware.

Finally, the manufacturer needs to realize the provided services by imple-
menting the functions associated to the selected configuration. This in-
cludes not only the application logic, but also the preparation and dispatch
of service messages, if this is not taken care of by a standardized service
communication framework.

4.5.2 Platooning service architecture

This section illustrates the service architecture for both collaboration sce-
narios of the platooning system. The required input products are the func-
tional model (Figure 4.8), the collaboration scenarios documented in the
role configuration model (Figure 4.11) and the function deployment to
roles (Figures 4.12 and 4.13). Figures 4.15 and 4.16 show the service ar-
chitectures for the collaboration scenarios S1 and S2.

Scenario S1 consists of both follower and leader roles with the active con-
figurations F1 and L1. The inner functions of the platooning system have
been deployed to the respective roles according to Section 4.4.2. An im-
portant aspect that has not been explained in detail in the deployment
section is how service interfaces between roles are identified in principle
based on a specific deployment. In scenario S1, all inner functions have
been deployed to the follower role and it can be observed that not all
required inputs of these functions can be provided by the follower truck
platform (indicated with the truck on the left side). Since no other roles are
existent for platooning, these inputs have to be provided from the leader
role through services. The functional service types of these services are de-
fined more detailed in the table at the bottom of Figure 4.15. Since the
service type name can not hold enough information, the table specifies
in detail the physical quantity for each functional service type including

62

Engineering safe nominal behavior

Figure 4.15: Service architecture - Platooning scenario S1

63

Service architecture derivation

description, unit, expected value range, quantization and a minimum fre-
quency indicating how frequently the service will be used. Out of the eight
required services, only the service get_V carries a continuous signal while
all other services are only used once at platoon building time, because they
are assumed to be constant during a single platooning trip and are thus of
sporadic nature. The value range and quantization declarations represent
realistic numbers that are valid in the context of heavy weight trucks.

Although required and provided services have only been mentioned as
black box interfaces of role configurations so far, the service hierarchy can
only be built by also considering the inner function deployment within a
role. An important aspect of service hierarchies is that services are not just
abstract signal flows. Instead, a required service outsources a responsibility
to another function or even configuration. This can happen either along
or against the signal flow direction. In Figure 4.15, function Safe Distance
Computation provides the abstract application service Safe Platoon Driving
that is consumed by the human drivers of leader and follower truck. Thus,
Safe Distance Computation has the responsibility to take care of the pla-
tooning collaboration being always safe during driving. Since complex sys-
tems are typically developed according to divide-and-conquer strategies,
the systems are composed of communicating components or functions.
In this way, Safe Distance Computation can only compute a safe distance
set point out of given follower stop and leader brake distances. Hence, it
cannot guarantee that the input distances have been computed correctly
and could thus in theory compute an unsafe distance set point. Because
of that, these two responsibilities are outsourced to the Follower Stop and
Leader Brake Distance Determination functions. Note that in both men-
tioned cases, the service provision follows the same direction like the sig-
nal flow. This is different for the third and last responsibility that has been
outsourced from Safe Distance Computation – the correct realization of
a distance set-point. Whereas the function provides a safe distance set
point as output, it could still happen that the set point is not actuated
correctly turning the collaboration potentially unsafe. Thus, Safe Distance
Computation demands from Distance Realization to realize its provided set
point correctly. The responsibility outsourcing procedure is repeated until
a responsibility can be completely satisfied by a single component or func-
tion. In the platooning system, these terminal components are the truck
platforms of both roles, which fulfill their responsibility by providing data
through sensors and actuation through the brake system and engine (only
required for follower).

The selection of the function and therefore the role providing the appli-
cation service is critical, because the responsibility for a safe overall col-
laboration should be only taken by a function which can decide if the
collaboration’s safe conditions are satisfied. Safe Distance Computation
has the required context knowledge, since its functionality has been di-
rectly derived from the platooning safe condition defined in Section 4.2.
Distance Realization or Follower Stop Distance Determination could not

64

Engineering safe nominal behavior

decide solely based on their inputs and outputs, if the collaboration is cur-
rently safe or not and thus it does not make sense to assign the application
service to one of these functions.

Figure 4.16: Service architecture - Platooning scenario S2

65

Service architecture derivation

The service architecture of scenario S2 is shown in Figure 4.16. The service
interfaces of the role configurations differ from those of scenario S1 due
to a different function deployment resulting from truck platforms provid-
ing different capabilities. It can be observed that scenario S2 yields only
four provided/required inter-role services. Although the amount is signifi-
cantly lower compared to scenario S1, the sporadic services that have been
required from Leader Brake Distance Determination in case of its deploy-
ment to the follower role in S1, are replaced in S2 by the continuous ser-
vice get_sBrake directly providing the leader’s brake distance. In addition,
Follower Stop Distance Determination requires two services get_RoadFrict
and get_RoadInc from the leader role containing the road slip coefficient
and the road inclination, respectively.

In summary, both service architectures provide a safe nominal behavior
specification for platooning by the orchestration of different role configu-
rations being able to provide the application service Safe Platoon Driving
to both drivers. More specifically, the service architectures enable safe pla-
toon driving provided that no systematic software or random hardware
failures propagate up within the service hierarchy finally prohibiting the
application service provision. Although both architectures yield a safe col-
laboration, they nevertheless differ in the following aspects:

Amount of services The amount of services between roles has a major
impact on the flexibility that an OAS manufacturer has for the imple-
mentation of a certain role, because the provided services of a config-
uration dictate exactly, which quantity has to be provided at which ac-
curacy. Hence, the more compositional the service types are in the end
(e.g. get_sBrake vs. get_RoadInc), the lower the amount of services and
the higher the flexibility for an OAS manufacturer will be.

Service impact on collaboration The exchange of information through
services carrying continuous quantities has a much higher impact on
the overall collaboration compared to sporadic services. This is not only
the case because of strict timing requirements, but also with respect to
a required continuous service provision, which is much more sensitive to
failure occurrences due to higher service consumption frequency during
the collaboration.

Functional performance The functional performance of the collabora-
tion, i.e. the safe distance value during platoon driving, is dependent
on the chosen configurations, more specifically on the assumed truck
platform capabilities for the configurations.

Having engineered a safe nominal behavior specification for the platoon-
ing collaboration assuming the absence of failures, Chapter 5 will examine
how the platooning system behaves when systematic software or random
hardware failures occur in both trucks. In order to guarantee a safe collab-
oration in this case, too, each role configuration will be eventually enriched
with a ConSert introducing a variant restriction from the safety perspec-
tive.

66

5 Engineering safe fail behavior

Based on a safe nominal behavior specification in the shape of a defined
service architecture, this chapter will first explain in Section 5.1 how fail-
ures propagate through OAS collaborations and how they can be sys-
tematically analyzed and documented as safety property types. Next, Sec-
tion 5.2 presents a simulative approach for the quantification of devia-
tion bounds for the safety properties of the collaboration interface. Sub-
sequently, Section 5.3 presents some general considerations of how an
argumentation for the safety of the collaboration can be developed. Fi-
nally, ConSerts will be created for each OAS in Section 5.4 mapping safety
guarantees to safety demands and thus yielding runtime certificates that
guarantee safety for the platooning collaboration. Figure 5.1 shows the
sequence of activities and their mapping to sections. Note that, due to
space constraints, only the platooning scenario S2 (refer to its service ar-
chitecture in Figure 4.16)) will be used from this point on for the illustration
of the concepts described in this chapter.

Figure 5.1: Safe fail behavior construction – Chapter structure

5.1 Service safety analysis

This section first explains general considerations for the safety analysis of
OAS collaborations in subsection 5.1.1 and subsequently applies a HA-
ZOP analysis on the functional service types of the platooning system in
subsection 5.1.2.

5.1.1 Safety analysis for OAS collaborations

Before safety properties and ConSerts can be defined in order to guar-
antee the provision of the application service in OAS collaborations, it is
necessary to understand the differences in what way failures propagate
through OAS collaborations compared to closed systems. To that end, Fig-
ure 5.2 illustrates the situation for a collaboration of two OAS, where both

67

Service safety analysis

OAS realize a set of functions with the collaboration interface consisting
of only one service.

Figure 5.2: Failure propagation in OAS collaborations

The eventual goal of the safety assurance activities of this chapter is to
guarantee that the application service’s safety properties are always satis-
fied during platoon driving. Thus, it is of high importance to identify all
potential failure modes of the collaboration that may prohibit the provi-
sion of the application service. In the same way as in closed systems, there
are two types of failures that may also occur within a single OAS: ran-
dom hardware failures originating from the OAS hardware platform and
systematic software failures that either stem from the implementation of
the application’s functionality or from software providing infrastructure
services like the operating system. The collaboration interface as such is
an additional source of failures in OAS collaborations because of the un-
derlying communication infrastructure introducing new potential failure
modes. In Figure 5.2, the failure sources are indicated with red lightning
bolts, while their propagation towards the application service is illustrated
with a red arrow.

A fundamental difference to closed systems is where failures may mani-
fest themselves and therefore which possibilities exist for their detection
and handling. If we temporarily only examine the providing OAS and for
instance consider a hazardous single bit flip in its RAM memory, it can be
observed that this is a hazard, which can be easily mitigated by standard
mechanisms like a parity check directly in the providing OAS. In this way,
the consuming OAS never notices that a hazardous state existed. The situ-
ation is different for failures causing behavioral deviations that can only be
perceived when examining the overall collaboration. The required context
knowledge for this judgment is only available in the OAS providing the
application service, which is the consuming OAS in Figure 5.2. Hence, the
OAS providing the service cannot detect or mitigate the failure, i.e. the
failure will inevitably manifest itself at the collaboration interface and thus
propagate towards the consuming OAS. From the point of view of the

68

Engineering safe fail behavior

consuming OAS, a received faulty value cannot be distinguished from a
correct value unless redundancy is in place, because the functional service
types documented in the service architecture do not make any statement
about potential deviations of service behaviors. Instead, they assume the
service behavior to be always delivered correctly.

Due to this distinction inability, the only chance to guarantee a safe pro-
vision of the application service is to tolerate failures to a certain degree.
In the platooning example, this means the inter-truck distance can be in-
creased to compensate for potential failures, which leads to a worse func-
tional performance for the sake of fault tolerance. In order to properly
implement this fault tolerance mechanism, it is of essential importance to
have quantified bounds on the deviations that may occur for a certain ser-
vice. This is required to determine concrete control values that realize the
failure compensation.

Before being able to specify deviation bounds for services, it is first of all
necessary to analyze each functional service type separately for potential
deviation types having safety-critical effects on the collaboration. In the
following, the types of safety-critical service behavior deviations will be
called safety property types according to the terminology of the ConSerts
approach. As a starting point of the safety analysis for OAS collaborations,
[17] used the hazard and operability study (HAZOP) on the functional ser-
vice types. The causal model of HAZOP is compatible with the notion of
failure manifestation described above, because by examining the poten-
tial effects of safety-critical deviations at the collaboration interface, it is
of secondary importance, where exactly a failure occurred in the system.
By using a top-down approach starting at the service-level, any combina-
tions of failures are covered, too, because their propagation will eventu-
ally reach the collaboration interface and hence also have an effect on the
service behavior. Thus, the identification of all potential safety-critical ef-
fects on the service behavior and their transformation into safety property
types yields a safety interface that can enrich functional service types with
safety information. Since the mere effects of a service behavior deviation
do not have a relation to the deviation’s causes, the reuse of functional ser-
vice types together with their associated safety property types in different
collaborations is possible. In addition, the modularity of safety property
types and functional service types facilitates the enrichment with respect
to other quality attributes like security in the future, too.

HAZOP guides the safety engineer by providing a set of guide words indi-
cating typical failure modes which shall be taken into consideration during
the analysis of a system. However, the set of applicable guide words is typ-
ically tailored to a specific application domain. With respect to OAS, it is
even the case that different kinds of services have typical failure modes
leading to a different interpretation of guide words for each kind. A first
step in this direction has been proposed in [35] containing a classifica-
tion of services (Figure 5.3) with respect to their usage purposes in OAS
collaborations. Concerning the application of HAZOP, the service classifica-

69

Service safety analysis

tion can be used to tailor sets of guide words for the different mentioned
classes. For instance, while the failure modes of a perception service like
the exchange of a continuous speed value will mainly target value fail-
ures, an arbitration service like the realization of a control set point will
have failure modes focusing rather on timing and provision failures. The
long-term prospect with respect to these service classification efforts is a
standardized domain-specific repository of basic functional service types
being classified according to Figure 5.3 including typical class-specific HA-
ZOP guidewords and failure modes. In this way, a service could be easily
reused together with its safety information as a complete package among
different collaborations of a domain. This packaging of experience would
not only improve the completeness and accuracy of failure modes due to
the addition of more complex failure modes to the repository over time,
but would also prevent safety engineers from repeating the analysis for
similar services.

Figure 5.3: Service classification within OAS collaborations [35]

After the failure modes have been analyzed for the collaboration interfaces
between all collaborating OAS, they shall be documented as safety prop-
erty types associated with the respective functional service types including
the following information:

1. A description of the potential deviation from correct service. This repre-
sents an interpretation of the HAZOP guideword for a given service.

2. The possible consequences that a deviation might have on the given
collaboration. These consequences are critical for the assessment of the
deviation’s safety risk and therefore, they influence the respective safety
properties integrity level (e.g. ASIL).

3. A description of potential causes that typically lead to the deviation.
This item is optional, but if that information is already available at this

70

Engineering safe fail behavior

point it helps during a further deductive in-depth analysis of the de-
viation’s causes either within the single OAS or in the communication
infrastructure.

More information on the relation between functional service types, safety
property types and their instantiation in shape of concrete services and
safety properties can be found in Section 2.2.2, where the operationaliza-
tion of ConSerts is described.

5.1.2 Platooning safety property definition

This section presents and explains the results of the safety analysis accord-
ing to HAZOP for the platooning collaboration’s service interface. As a
basis for the HAZOP analysis, the following commonly known set of guide
words has been used: omission, commission, too low, too high, too early,
too late. A more detailed taxonomy of failure types and therefore an ex-
tended set of guide words has been lately proposed in [36], which, apart
from provision, content and timing domains, explicitly distinguishes be-
tween sporadic and permanent failures, too. However, this differentiation
did not yield additional findings for the analysis of the platooning system.

The identified safety property types for the service types get_sBrake and
get_V (referring to the service architecture in Figure 4.16) are listed in
Figure 5.4. Due to a lack of space, the safety property type description
of the other services get_RoadFrict and get_RoadInc can be found in Fig-
ure A.1 in the appendix of this thesis.

The approach for applying the guide words was to look at first only at the
service type descriptions and interpret the guide words for the given ser-
vices. This yielded the information documented in the first three columns
of the table. The description of a service behavior deviation has been split
into two parts, namely a qualitative description and quantitative refine-
ment parameters, because a specific deviation might exist in different col-
laborations, but with different values for the parameters. This procedure
also prepares the next step in the process, where the refinement param-
eters will be concretized for the given specific collaboration. The last two
columns of the table consider a judgement whether a certain deviation
is safety-critical for the given collaboration and gives indications for the
causes of the failure mode.

Since all examined service types carry continuous signals of physical quan-
tities, the first identified pattern has been that the guide words “commis-
sion”, “too early” and “too late” do not make sense for these kinds of
services. The underlying reason is that the benefit of a continuous “get-
ter” service gets larger, the more frequently a value is delivered. Therefore,
an unrequested delivery is not a failure mode in this scenario. In addition,
failure types from the timing domain stemming from too early or too late
are typically applied to event-based signals where a specific point in time is

71

Service safety analysis

Figure 5.4: Safety property types of service get_sBrake and get_V

required for a signal. These failure modes are more relevant when dealing
with arbitration services, where other OAS should be remotely controlled
through a service. The examined services are perception services only and
thus timing failures are irrelevant.

Hence, perception services are only prone to two types of failure modes:
Firstly, an omission, i.e. an absence of service provision, and in case the
service is provided, the values can be either lower or higher than the ac-
tual value. An interesting finding in this respect is that with all examined
service types, only a value deviation in one direction was judged as being
safety-critical. This is a logical consequence, when the effects on the col-
laboration are studied, because all perception services influence the com-
puted safe distance set point. Thus, when the correct value of a perception
service yields exactly the correct safe distance, a deviation will either result
in a too short or too long distance set point of which only the short one is
safety-critical for the collaboration.

72

Engineering safe fail behavior

Having determined the primary failure modes of the basic functional ser-
vice types of the service interface among follower and leader, a special
consideration is needed for the application service Safe Platoon Driving
being provided by the follower truck. Since the application service is for-
mulated on a very abstract level, the HAZOP guide words cannot be ap-
plied to it, because whether the platoon driving can be guaranteed for
all participants in a safe way or not is a binary decision only. The most
suitable failure type in this respect would be an omission of the applica-
tion service with an omission time of 0 ms to emphasize that the service
must be always provided during platoon driving. At first glance, the an-
notation of the omission safety property type seems superfluous, but if
the eventual definition of ConSerts is considered, the application service’s
safety properties will be the provided safety interface of the ConSert for
the platooning system of the follower role.

In the agricultural case study in [5], the safety property types have been
additionally annotated with a situation-related refinement, i.e. whether a
certain failure mode has different effects and therefore different criticality
depending on the situation. This additional information was useful in the
TIM scenario, because a distinction between the very different situations
standstill and normal operation has been used and therefore yielded ad-
ditional input for the risk assessment. However, platooning as defined in
this thesis considers a platoon to be driving on highway with high speeds
as the only “major” situation. Therefore, an additional situation-related
analysis was not performed as part of this thesis.

5.2 Simulative safety property quantification

This section presents a simulative approach for the quantification of refine-
ment parameters for the safety property types, which have been identified
for the functional service types of the platooning system in the previous
section. To that end, Section 5.2.1 will describe the general concept and
the underlying considerations for the choice of numerical simulation as
a means for the quantification. Afterwards, building on top of the quali-
tative functional decomposition of Section 4.2, a detailed physical model
of platooning suitable for simulation will be given in Section 5.2.2. The
realization of the simulation model in Matlab/SimulinkTM as well as the
simulation procedure will be illustrated in Section 5.2.3. Finally, the safety
property refinements based on the simulation results will be given in Sec-
tion 5.2.4.

5.2.1 Quantification concept

The quantitative refinement of safety property types with respect to a con-
crete collaboration scenario is a core activity for the construction of a safe
fail behavior specification with ConSerts. Considering the anatomy of a

73

Simulative safety property quantification

ConSert, it maps safety guarantees for provided services to safety de-
mands of required services of a collaboration role configuration, during
which guarantees as well as demands are expressed through safety prop-
erties. The argumentation of a ConSert for guaranteeing a safe behavior
follows the idea that a safety guarantee can only be given, if all safety
demands being mapped to that guarantee are satisfied by other collabo-
ration partners. These demands require that the safety properties of the
required services are not violated, i.e. that the identified deviations will
always stay between fixed maximum boundaries. A quantification of the
maximum boundaries for all safety properties is necessary, because other-
wise there would be no means to reason about the overall collaboration’s
safety.

As soon as fixed deviation boundaries are specified for each service, these
boundaries can be used to actively compute set points for controlling the
collaboration state so that deviations within these boundaries can be toler-
ated in a safe way. The variable for controlling the state of the platooning
collaboration is the set point for the inter-truck distance. The idea is to
increase this distance when big ranges of deviations should be tolerable
or to decrease the distance in case only small deviations can be guaran-
teed by the truck providing the services. Obviously, when increasing the
distance, the air drag is also increased for the follower truck and thus the
benefits in terms of saved fuel decrease. Hence, an optimal functional per-
formance is only possible, if minimal deviation ranges can be guaranteed.

For the following considerations, potential service behavior deviations
have to be integrated into the safe distance definition given in Sec-
tion 4.1.2. In order to determine, how much additional separation be-
tween the trucks is needed for safely tolerating specified deviations, a new
physical quantity called safety margin dmargin shall be introduced. For this
purpose, Figure 5.5 extends the visualization of the safe distance during
failure absence (see Figure 4.3) with the quantities ∆sbrake,L,∆sstop,F and
dmargin stemming from safety-critical deviations.

The upper part shows the situation where a crash will occur after an emer-
gency braking maneuver, because both sstop,F and sbrake,L are increased
due to deviations. Note that the increase amount ∆sstop,F is much higher
than ∆sbrake,L. The additional distance that needs to be maintained be-
fore a braking maneuver to compensate for these deviations is the safety
margin dmargin indicated with the red arrow in both situations. Based on
this observation, the safety margin can be formulated as:

dsafe + dmargin + sbrake,L + ∆sbrake,L = sstop,F + ∆sstop,F

=⇒ dmargin = ∆sstop,F −∆sbrake,L Functional level

=⇒ dmargin = f(∆s1,∆s2, · · · ,∆sn) Service level

with ∆si : value deviation of required service si

74

Engineering safe fail behavior

Figure 5.5: Impact of service behavior deviations on collaboration safety

The service level definition above shows that dmargin is defined by a func-
tion of deviations of scenario-specific required services, which eventually
influence ∆sstop,f and ∆sbrake,L. For the quantification of the safety prop-
erties, this means there are two possible procedures for the determination
of maximum deviation bounds yielding a safe collaboration:

1. dmargin is fixed to a certain value and all combinations of ∆si are
searched for so that the above service-level equation holds. Descrip-
tively spoken, this means a specific inter-truck distance should be fixed
guaranteeing a certain functional performance. The optimization goal
is to find sets of maximum value deviation bounds for all services so
that the required functional performance can be achieved.

2. Specific ∆si are selected as fixed and the required additional distance
dmargin is computed. The descriptive goal of this procedure is to have
a set of maximum deviation bounds fixed, e.g. based on an existing
platooning realization, and compute the best functional performance
that can be achieved with this setting. The results can be used to reason
about the effects of larger or smaller allowed deviation ranges on the
functional performance.

Both described quantification procedures can be carried out either analyti-
cally or with a simulative approach. The analytic variant for the platooning
system would consist of a mathematical refinement of the functional-level
safety margin definition with respect to the influence of given services on
∆sstop,F and ∆sbrake,L in a specific scenario. However, considering the
complexity of realistic systems, it is hardly possible with reasonable ef-
fort to analytically determine the function f of the service-level definition
above.

75

Simulative safety property quantification

Figure 5.6: Simulative quantification of safety properties

Thus, we selected the simulative variant in combination with the first
quantification procedure delineated above and created an executable sim-
ulation model for the platooning system. For a simulation, both leader and
follower roles are treated as black boxes and different combinations of
service value deviations can be realized by failure injections at the service-
level. In this way, the parameter vector for one simulation run of an emer-
gency braking maneuver contains on the one hand a set of fixed service
deviations and on the other hand a fixed value for dmargin. The simulation
has to be performed for a pre-defined set of parameter vectors. Eventu-
ally, a parameter vector can be considered safe for a simulation run, if the
simulation’s braking maneuver does not yield a crash among both trucks.
In addition, a parameter vector is optimal, if the inter-truck distance after
the brake maneuver is minimal, but still positive. The simulation procedure
for the quantification of safety property refinements is illustrated for the
platooning system in Figure 5.6.

Based on the simulation results, different sets of service deviations can be
chosen that yield a safe and preferably optimal collaboration with respect
to the functional performance. The chosen deviation sets are eventually
used for the definition of the deviation boundaries within the safety prop-
erty refinements with respect to specific collaboration scenarios.

5.2.2 Physical model building of a truck

The chosen simulative approach for the quantification of safety proper-
ties requires to build a simulation model of the collaboration. Given the
simulation approach in Figure 5.6, the requirements for the platooning
simulation model are:

1. Create a physical model of platooning considering all relevant charac-
teristics of both trucks as well as the collaboration environment, i.e.

76

Engineering safe fail behavior

the behavior of all inner functions of the functional model defined in
Section 4.2.2 have to be concretely modeled.

2. Provide a framework enabling a batch simulation of a defined set of
parameter vectors and data recording for the simulation results.

While the remainder of this section will focus on the creation of a realistic
physical model for platooning, the realization of its batch simulation in
Matlab/SimulinkTM will be the content of Section 5.2.3.

Physical motion model of a truck

In order to build a physical model of platooning that can finally be sim-
ulated, an exact mathematical representation is required for platooning
in general and for the considered scenarios in particular. The essential
safety-critical scenario, which shall be simulated, is the emergency brak-
ing maneuver starting in the platoon’s steady state, i.e. where both trucks
are platooning with the same speed v0 and an initial distance d0. The
brake scenario is initiated by the leader driver, who brakes with maximum
brake force until the leader truck comes to a stop. The follower truck au-
tonomously reacts with full braking to stop, too, as soon as leader braking
is perceived.

According to the functional decomposition in Section 4.2, both leader
brake distance and follower stop distance are needed for the computation
of a safe distance and eventually a deceleration set point for the follower
truck. This requires a physical model of each truck expressing how brak-
ing affects the truck’s motion state, i.e. the acceleration a(t), speed v(t)
and traveled distance s(t), where the speed is obtained by single integra-
tion of a(t) over time, whereas traveled distance results from two-time
integration of a(t) over time. Note that we are finally interested in the
traveled distance, because its value at standstill is equal to the brake/stop
distance. The temporal braking process for each truck as such will be mod-
eled according to the one described in Figure 4.6 in Section 4.2. As already
indicated there, a closed form solution for the stop distance of the brak-
ing process is available in [31], but this solution does not consider truck
characteristics and influences, which are of importance for the platooning
collaboration defined in this thesis such as the air drag having a major
impact on a realistic computation of the stop distance.

In the following, the motion state of a truck should be mathematically
derived for a given requested deceleration aset(t) under the influence of
air, rolling, acceleration and inclination resistances. Therefore, the first step
is to create a force diagram of all forces, which act on a truck during
braking (Figure 5.7).

While the forces FAir, FRoll, FRoad and FWeight stem from specific truck
characteristics and the environment, FBrake is the force that the brake
system transfers through the wheels on the street according to the request
of the driver or, in the autonomous case, of the system. FV ehicle represents

77

Simulative safety property quantification

Figure 5.7: Driving resistance forces acting on a truck

the resulting force that is finally affecting the truck’s motion. Note that the
inclination resistance FRoad is a consequence of the truck’s weight force
FWeight and its value is that component of FWeight acting in parallel to
the road. Thus, FWeight does not need to be considered in the following.
The sum of all forces with correct signs yields the resulting force FV ehicle:

FV ehicle = −FBrake − FAir − FRoad − FRoll (5.1)

According to the standard literature, e.g. [31, p. 38-96], the resistance
forces can be replaced with a mathematical relation of their influential
quantities.

λmm · a(t) = −maset(t)−
1

2
ρcwA · v2(t)−mg q

100
− frmg (5.2)

with λm = rotational mass factor, m = truck mass,

a(t) = truck de-/acceleration, aset(t) = requested de-/acceleration,

ρ = air density, cwA = air resistance area, v(t) = truck speed,

g = gravity, q = road inclination, fr = roll resistance coefficients

The consideration of a(t) = v′(t) and the subsequent isolation of v′(t) in
(5.2) leads to (5.3), where all time-independent coefficients and terms can
be summarized into single constants (5.4).

v′(t) = − 1

λm
aset(t)−

ρcwA

2λmm
· v2(t)− g · q

100λm
− frg

λm
(5.3)

= − 1

λm
aset(t) +KAir · v2(t) +KRoad (5.4)

with KAir = − ρcwA

2λmm
and KRoad = − g · q

100λm
− frg

λm

Equation (5.4) finally represents the 1st order, 2nd degree inhomogeneous
differential equation (DE) with constant coefficients describing the motion
of a truck, where the driver’s requested de-/acceleration aset(t) is the stim-
ulation of the truck system. With the computation of a DE solution for
v(t), both a(t) and s(t) can be determined by derivation and integration,
respectively.

78

Engineering safe fail behavior

Stop distance computation

This section instantiates the previously defined motion model of a truck for
the different phases of a braking process. The braking process has been
introduced already in Section 4.2.2, so Figure 5.8 shows only the function
course for the requested deceleration aset(t) together with a partition of
the stop distance sstop into the sections sreact, sb,dwell and sb,max belong-
ing to the different braking phases.

Figure 5.8: Stop distance composition for the braking process

The reason for partitioning sstop into three sections is that the course of
aset(t) can be also divided in three sections having a homogeneous shape
each.

aset(t) =


0 0 ≤ t ≤ t1
Dmax

tS
· t t1 < t < t2

Dmax t2 ≤ t ≤ t3
(5.5)

Both the maximum deceleration Dmax and the dwell time tS are known
constants and thus, the truck motion DE (5.4) can be formulated for the
braking process as:

v′(t) =


KAir · v2(t) +KRoad 0 ≤ t ≤ t1 (5.6)

KAir · v2(t) +KD1 · t+KRoad t1 < t < t2 (5.7)

KAir · v2(t) +KD2 +KRoad t2 ≤ t ≤ t3 (5.8)

with KD1
= −Dmax

λmtS
and KD2

= −Dmax

λm

While equations (5.6) and (5.8) are structurally equal, (5.7) includes an ad-
dition linear term being dependent on t. Thus, in order to compute explicit
solutions for the traveled distance s(t) in all phases, two types of differ-
ential equations need to be solved considering the relation s(t) =

∫
v(t)

79

Simulative safety property quantification

as well as the boundary conditions s(0) = 0, v(0) = v0 and v(t3) = 0 for
the braking process. In addition, the value continuity of v(t) at t1 and t2
needs to be guaranteed among the involved solutions at these times, i.e.
the initial speed of the phases starting at t1 and t2 must be equal to the
end speeds of their previous phases. Due to the lack of space, background
information on the DE types as well as hints to their mathematical solution
procedures are given in the appendix section A.1.

Having explicit functions for the traveled distances s1(t), s2(t) and s3(t),
the stop distance sstop can be determined as:

sstop = sreact + sb,dwell + sb,max

= s1(t1) + s2(t2) + s3(t3) (5.9)

= s1(tR + tA) + s2(tS) + s3(tB)

Distance and speed control

With respect to the functional model of platooning given in Section 4.2.2,
the only function for which no explicit behavior specification exists so far,
is the controller that transforms set points for truck distance and relative
speed into a de-/acceleration set point for the follower truck. For the sim-
ulation model, a controller design from [32, p. 872ff.] has been chosen
that is generally applicable for adaptive cruise control systems (ACC). Its
transfer function is given in equation (5.10).

ai+1(t) =

(
vrel −

dset − dactual
τd

)
/τv (5.10)

The controller primarily controls the relative speed of the trucks to be
vrel = 0. The distance error dset − dactual is interpreted as an error of
vrel and is thus subtracted from it. τd and τv are parameters for the con-
troller allowing a fine tuning of how aggressive control differences are
controlled, i.e. how high the resulting de-/accelerations are. This is an im-
portant issue with respect to the physical limitations for the realization of
de-/accelerations, especially in the case of trucks.

Figure 5.9: Block diagram of distance and speed controller

80

Engineering safe fail behavior

Figure 5.9 shows a block diagram of the controller being equivalent to
equation (5.10). τd is represented with the “Distance Deviation Amplifica-
tion”, while τv is hidden as the PID controller’s proportional element.

5.2.3 Realization in Matlab/Simulink

This section shall give a short overview of how both simulation model
and procedure have been realized in the popular behavioral modeling tool
Matlab/SimulinkTM of the MathWorks company. In general, it can be stated
that a simulation model of an embedded system in the automotive domain
has to consider three aspects:

1. a model of the system under development (the platooning system)

2. a model of the environment acting as source for sensing activities and
as sink for system outputs affecting the environment

3. a model of the (human) driver(s) operating the system

All of these aspects have been modeled in Simulink for the platooning
system. An overview of the model is presented due to space constraints
in Figure A.2 in the appendix. Note that both parts of the figure have to
be imagined to be horizontally side-by-side to get the complete overview.
In order to control the simulation of the Simulink model, a graphical user
interface (GUI) has been developed (Figure 5.10) that enables several sim-
ulation possibilities for the engineer.

There are two modes how the model can be stimulated, i.e. how the
leader truck can be “driven”: Firstly, the engineer can perform the sim-
ulation interactively in real-time by using the throttle at the top for ac-
celeration and braking. This also includes a simple cruise control, which
keeps the speed constant if activated, and a button performing an instant
emergency braking maneuver. Secondly, pre-defined acceleration profiles
can be created and simulated faster in simulation time. This enables a re-
peatable behavior for batch simulations, which is required for the safety
property quantification. The remaining sections of the GUI allow a param-
eterization of the model with respect to the environment, the leader and
follower trucks as service deviations. In the interactive mode, all of these
parameters can be changed during simulation to examine their effects im-
mediately.

For the batch simulation of the platooning system’s behavior during the
occurrence of service deviations, a Matlab script has been created that al-
lows the variation of specified parameter ranges and the subsequent par-
allel simulation on computation clusters. This simulation method is called
Rapid Accelerator Mode [37] and compiles the Simulink model into a na-
tive standalone executable, which enables the best achievable simulation
performance that is technically possible with Matlab/Simulink.

81

Simulative safety property quantification

Figure 5.10: GUI for controlling simulations of the platooning system

5.2.4 Simulation results

Having explained how the simulation model of the platooning system has
been created and how the simulation has been carried out with Mat-
lab/Simulink, this section first presents the simulation results of concrete
parameter vectors that have been simulated. Afterwards, it will be illus-
trated, how the simulation results lead to concrete safety property refine-
ments.

The simulation was performed based on the platooning service architec-
ture of collaboration scenario S2 (Figure 4.16). Although the batch simu-
lation was optimized for Simulink’s rapid accelerator mode and executed
on the high-performance computation cluster of TU Kaiserslautern (16
cores, 128GB RAM), it was observable quite fast that the service deviation
variation was not possible for all services of the scenario with reasonable
step sizes for the variations. Therefore, we restricted ourselves to a varia-
tion of value deviations for the services get_sBrake and get_V providing
the leader’s brake distance and current speed, respectively. In addition,
the safety margin dmargin has been varied. The truck platform parameters
have been chosen to be equal for both trucks, more specifically, standard
values for modern trucks have been selected.

82

Engineering safe fail behavior

Variation subject Range Step size #Variations

∆vL [-10,+10] km/h 0.5 km/h 41

∆sbrake,L [-10,+10] m 0.5 m 41

dmargin [0,+12] m 4 m 4

Table 5.1: Simulation parameter variation

The chosen ranges, step sizes and the resulting number of variations
per subject are given in Table 5.1. The combination of all variations
with each other requires 41 · 41 · 4 = 6724 simulation runs overall. The
fact that the inclusion of variations of the scenario’s missing services
get_RoadFrict and get_RoadInc with a comparable variation granularity
would yield 6724 · 41 · 41 = 11 303 044 required simulation runs, suggests
that the choice of a reasonable variation granularity is of high importance
for avoiding scalability issues.

Figure 5.11: Simulation results

Figure 5.11 shows a comparison of the simulation results for three differ-
ent safety margins of 0, 4 and 8 meters. The axes represent the amounts
of value deviation for the two considered services, i.e. a data point is the
result of a simulation run with a combination of these concrete deviations.
The third dimension, which is presented as the color of the data points,
represents the distance among the trucks being left after the braking ma-
neuver. If a crash occurred for a certain simulation run, the left distance
was negative, which is indicated with a red data point meaning that the
combination of service deviations was unsafe. In the opposite case, where
a positive distance was left after the maneuver, the data point is colored
green suggesting a safe deviation combination. Thus, all data points that
lie on the line separating safe from unsafe zone, belong to simulation runs
that yielded an optimal functional performance, because the left distance
after the maneuver was exactly zero in these cases, i.e. no unnecessary
large distance was maintained before the braking maneuver.

Back in Section 5.2.1, the safety margin has been introduced as a means
to compensate for increased deviations. This statement is supported by
the plots of Figure 5.11, since the space of safe deviation combinations

83

Simulative safety property quantification

grows all the larger, the higher the safety margin is chosen. Another aspect
that could be verified through the simulation is the correctness of the
safety property types that have been derived in Section 5.1.2. For both
services get_V and get_sBrake, only the failure modes “Value too high”
(deviation > 0) have been deemed safety-critical, which is acknowledged
by the plots.

The process of how specific ranges of tolerable deviations can be deter-
mined for the services shall be explained in the following on the basis
of Figure 5.12, where an annotated version of the simulation results for
dmargin = 4m is given.

Figure 5.12: Selection of concrete safety property refinements

Because of the fact that the functional performance is optimal at the bor-
der line between safe and unsafe zone, it makes sense to select a point
for the upper deviation bounds from that line (Annotation 1). Specif-
ically for the illustration, the upper bounds ∆vL,max = +4km/h and
∆sbrake,L,max = +2m have been chosen, i.e. if both services’ values devi-
ate exactly in this manner, a crash can be avoided just in time leading to
an inter-truck distance of zero after the braking maneuver, if an additional
distance of 4m (safety margin) has been maintained before the braking
maneuver.

The next step is to choose corresponding lower bounds for the service
deviations. Since the deviations are assumed to occur with equal probabil-
ities in positive and negative directions, the lower bounds are determined
as ∆vL,min = −4km/h and ∆sbrake,L,min = −2m (Annotation 2). This
observation explains why it is not possible to tolerate any deviations in the
left plot (dmargin = 0m) of Figure 5.11. The reason is that all points lying

84

Engineering safe fail behavior

on the optimal line do not represent deviation sets that have only positive
deviations and can therefore not serve as upper bounds.

Having selected both upper and lower bounds, the space of tolerable de-
viation sets is completely specified and is visually shown with the purple
rectangle in Figure 5.12. Note that the lower bounds are not necessarily
required from a safety perspective, because only the positive deviations
(“value too high”) have been deemed safety-critical in the corresponding
safety property types. However, a determination of the lower deviation
bounds guarantees a boundary for the maximum performance loss. This
stands to reason, because the additional safety margin of 4 meters will be
always maintained to guarantee a safe collaboration during value devia-
tions, no matter if these deviations exist or not. In the case of negative de-
viations, the distance could even be chosen closer than in the case, where
no deviations occur at all. As indicated in Figure 5.12, the maximum pos-
sible performance loss with the selected lower and upper bounds is 8 me-
ters, which is exactly twice the amount of the chosen safety margin. Con-
cretely, the maximum loss occurs in the situation, where ∆vL = −4km/h
and ∆sbrake,L = −2m, because in this case the platoon could still collab-
orate safely if the truck separation would be 8 meters less.

Coming back to the safety properties being needed for the derivation of
ConSerts, the idea is now to select one or more boundary sets according
to the described process for the refinement of each safety property. For
the running example, we chose two different safety property refinements
that both guarantee a safe collaboration, but yield different functional
performances. Note that, indeed, the functional performance has been
used as an optimization criterion here, but there are also other conceivable
optimization drivers, for instance the cost for guaranteeing that a service
is provided with certain deviation bounds. Finally, the exemplary safety
property refinements of the running example’s collaboration scenario S2
are presented in Figure 5.13.

5.3 Collaboration safety concept

Having defined functional service types, service architecture and refined
safety properties for all services of the collaboration interface, the next
step is to provide a safety concept that can bring forward the argument
that the collaboration is safe, i.e. that the following safety goal is met:

Safety Goal The platooning system must not cause a frontal crash be-
tween follower and leader trucks during driving on highway.

In order to achieve completeness, this safety goal has to be met in all three
different phases of platooning, namely platoon building, driving and dis-
solving. The running example only considered the platoon driving phase in
detail, thus only some general thoughts will be given for the other phases.
The following elaborations assume that the platooning collaboration is

85

Collaboration safety concept

Figure 5.13: Safety property refinements – Platooning scenario S2

safe in any of the phases, if the leader truck can perform an emergency
braking maneuver without causing a crash between the trucks. The rea-
son for this assumption is that other road users besides the two trucks as
well as lateral movements have been explicitly excluded in the examined
scenario.

Considering the building phase of the platoon, where both trucks are still
driven by human drivers at first, it is required to check that the inter-truck
distance is safe enough before the platoon is built. Note that the term
“safe enough” is targeting the capabilities of the platooning system in-
stead of the follower truck’s driver, because the system has a much faster
reaction time than a human and therefore the safe distance can be smaller
if the system controls the follower truck. In contrast, platoon dissolving is
triggered either by the intention of the drivers or because the system can-
not further guarantee safe platooning. Of these two triggers, only the
second one is highly safety-critical, because handing over the control back
from the system to the driver is not instantly possible due to their differ-
ent reaction times. Thus, the recognition that a safe collaboration cannot
be guaranteed anymore must occur sufficiently early to ensure a timely
increase of the truck separation. Taking into account that the follower
truck driver might additionally not completely focus on traffic during the
autonomous operation, [38] proposes a minimal time span of 10 seconds
until a driver is ready to actively control his vehicle again. With typical truck
speeds of 90 km/h, this means that the platooning system must be able to
predict the collaboration’s safety at least 250 meters ahead of the platoon.
Given the dynamics of the platoon environment, this judgment is a tough
challenge from a safety perspective.

86

Engineering safe fail behavior

Figure 5.14: Abstract safety concept for the platooning system

In general, a safety concept for an OAS collaboration is supposed to pro-
vide an argumentation on two different abstraction levels (Figure 5.14):
Firstly, an argument has to be presented for each collaboration role sepa-
rately, showing how the safety properties of its provided services are guar-
anteed under the assumption that the safety properties of its required
services are guaranteed from other roles. If a role’s service interface and its
safety properties are known in advance, this task can be carried out in iso-
lation with the scope set to a single OAS only. In addition to this so-called
role safety concept, it is necessary to have a dedicated role, which takes
care of safety measures targeting the overall collaboration and therefore
enabling the provision of the associated application service. This dedicated
role has to be designed in a way so that it has enough context knowledge
to determine the current safety status of the collaboration. Already dur-
ing the function deployment activity in Section 4.4.2, the pursuit of hav-
ing a role with high context knowledge became apparent. The underlying
train of thought was that a high context knowledge enables taking the
responsibility for guaranteeing the collaboration’s safety, too. Within the
platooning system, the function Safe Distance Computation provides the
application service and is therefore also the so-called safety-responsible

87

Collaboration safety concept

function. Its required services are of two general kinds. On the one hand,
it requires the provision of input quantities that have specified maximum
deviation bounds and on the other hand, a correct actuation of its pro-
vided set points is demanded.

With respect to the required inputs, it is initially irrelevant for the safety
concept as such, whether the values are provided from the follower truck
platform or through services from the leader role provided that their de-
viation bounds are specified. Instead, the main task is to define safety
measures as part of the safety-responsible function that describe how the
identified failure modes like an omission or a value deviation of an input
value are handled to guarantee a safe collaboration. In general, this in-
cludes the choice of fault tolerance mechanisms being able to detect and
handle failures. If a failure cannot be detected or recovered from, a safe
collaboration is potentially not possible anymore and thus, a transfer into a
safe state is required. Considering the ConSert approach, the refinement
of the collaboration interface’s safety properties can be thought of as a
fault tolerance mechanism, where the detection of failures is shifted to
the design time and a safe handling of their potential effects is realized by
specifying maximum deviation bounds by construction. Nevertheless, the
safety concept has to include an argumentation, why a certain set of tol-
erated deviations for the required services yields a safe collaboration at all.
In this respect, the approach within this thesis has been the simulation of
deviations, but there might be other approaches for the argumentation,
too.

So far, only safety properties describing value deviations of services have
been safeguarded by requiring maximum deviation bounds. However,
when it comes to permanent service omissions that for instance stem from
a permanent sensor failure, the safety-responsible function needs to finally
transfer the system into a safe state. If essential information for guaran-
teeing safe platooning is not present, one potential maneuver could be an
immediate emergency braking maneuver of the follower truck to definitely
prevent a frontal crash with the leader truck. Although this concept would
satisfy the safety goal in the running example, it would probably cause ac-
cidents in real-world scenarios with road users driving behind the follower
truck, because they do not expect sudden emergency braking and may
not maintain the statutory separation to the follower truck. Another alter-
native in this scenario could be pro-active braking with moderate deceler-
ation only following the argumentation that the probability of occurrence
of a service omission and an emergency braking maneuver of the leader
truck at the same time is acceptably low. A more general approach for
safe-guarding omissions is the installment of redundancy patterns realized
in hardware or software. For instance, if a permanent sensor loss is con-
sidered leading to an omission of a service, providing a second one of the
same kind can be a solution.

In summary, this section described that compliance with the collaboration’s
safety goal can be split in two parts. Firstly, the realization of collaboration-

88

Engineering safe fail behavior

level safety measures should be concentrated on one function within
the role providing the application service and having the highest con-
text knowledge. This so-called “safety-responsible” function is the only
entity within the collaboration that is able to both detect and thus safe-
guard failures being critical for the overall collaboration. In contrast, fail-
ure modes which do not propagate across the collaboration interface or
which can be detected without considering the collaboration, can be safe-
guarded as part of the role safety concept.

5.4 ConSert derivation

At this point, all domain-level engineering activities have been finished,
which enable different truck manufacturers to realize collaboration roles
in isolation yielding a safe collaboration though. This section focuses on
the creation of ConSerts, which assemble the safety-relevant information
from the existing artifacts into a runtime representation so that an auto-
mated check can be performed at runtime, whether a safe collaboration
can be guaranteed or not. While Section 5.4.1 explains the relation be-
tween the domain-level artifacts, system-level artifacts and ConSerts con-
ceptually, Section 5.4.2 presents the ConSert models for the running ex-
ample.

5.4.1 Transition from domain to systems engineering

On the domain engineering level, a repository of the following artifacts
has been created for the platooning collaboration so far:

1. Role definitions

2. Role configurations describing different possible service interfaces of a
role

3. Collaboration scenarios considering specific configuration combina-
tions for each role

4. Safety property types attached to the services of a role configuration

5. Safety property refinements describing concrete deviation bounds for
services within a collaboration scenario

A truck manufacturer with the goal to turn either a new or an existing
truck of his fleet platooning-ready can make use of the domain reposi-
tory in the following way. Firstly, he has to select the role(s) and the role
configurations the truck under development should support. This decision
is mainly dependent on existing hardware, cost and quality guarantees
that are achievable with the selected configurations. For a specific con-
figuration, the guaranteed quality attributes are determined through the
set of provided and required services. However, variable safety guarantees
and therefore variable functional performances might be given for a single

89

ConSert derivation

provided service dependent on the number of selected safety property re-
finements. The domain-level repository from which the manufacturer can
choose is visualized on the left side in Figure 5.15.

Figure 5.15: OAS development phases

Having performed the selection of which functionality has to be realized
(roles, configurations) and how well the achievable performance at run-
time should be (safety property refinements), the manufacturer has to
technically design and implement the functionality. Thereby, the manu-
facturer can assume that there exist role configurations for other roles
matching the service interface of his selected one(s). This includes that the
concrete implementation can build upon the fulfillment of external safety
demands, i.e. that for required services, maximum deviations bounds are
guaranteed. Thus, the manufacturer has to provide a realization of the
configuration’s provided services that satisfy the safety guarantees associ-
ated with these services.

Note that the viewpoint that a manufacturer can assume that roles exist
with matching service and safety interfaces is a fundamental difference to
the original notion of ConSerts as defined in [5]. Refer to the discussion in
Section 6.2 for more details on the reasons, why we think that a top-down
definition of ConSerts might be more valuable for some collaborations
than the originally proposed bottom-up version from [5].

In parallel to the design of the technical solution, the manufacturer has to
develop a safety concept providing a sound argumentation, how and why
the concrete implementation is able to provide the safety guarantees with
the required quality specified as part of the refinements. General consid-
erations of how such a safety concept could look like have been given in

90

Engineering safe fail behavior

Section 5.3. In particular, the safety concept will be considerably different
in nature and extent for roles providing application services in contrast to
roles acting only as “data providers” with minimal safety responsibility. The
argumentation of how the safety guarantees are met by the implementa-
tion, consists of a top-down graph structure that relates safety guarantees
at its top to safety demands at the bottom, which are required to be ful-
filled from other OAS. The detailed argumentation is thus the connecting
piece in the middle of the graph.

As soon as implementation and safety concept/argumentation are fin-
ished, safety standards like ISO 26262 require a certification procedure,
where external certification bodies evaluate, whether design, implemen-
tation and safety concept fulfill the standard’s requirements. If this is the
case, a safety certificate is issued for the examined item and finally it can
be released to the market. In the context of closed systems, the exam-
ined item is certified with respect to functionality that is self-contained
and completely available during the certification. However, the situation
is different for OAS, because the certification of a certain configuration
can only happen conditionally, i.e. the fulfillment of safety guarantees can
only be certified under the condition that external safety demands of the
configuration’s services are fulfilled as well. This mapping between safety
guarantees and safety demands of a configuration is represented by Con-
Serts (right side of Figure 5.15). Thus, a ConSert can be thought of either
as an abstraction of a configuration’s safety concept or as a part of the
more general safety case that only includes the information, which is re-
quired to check at runtime, whether the safety interfaces of two different
OAS are compatible with each other. For both OAS, the fulfillment of their
respective safety interface has been pre-certified at development time and
a ConSert has been issued. Hence, the detailed safety concepts do not
have to be present at runtime.

The basic model elements of ConSerts are Boolean operations that estab-
lish the relation between safety guarantees and safety demands. In Fig-
ure 5.15, it can be observed that the quality resulting from the refinement
R1 of safety guarantee SG1 can be guaranteed in two situations: Either all
of the safety demands SD1 - R1, SD2 - R1 and SD3 - R1 are fulfilled by an
external OAS or SD1 - R2 and SD2 - R2 are satisfied. Thus, in addition to
the variability of choosing among different configurations, ConSerts offer
an additional variability dimension that considers only the safety properties
of services.

5.4.2 Platooning ConSerts definition

This section presents the ConSerts for the leader and follower configu-
rations of platooning scenario S2, whose service architecture has been
defined in Section 4.5.2. A graphical representation of both ConSerts is
visualized in Figure 5.16.

91

ConSert derivation

Figure 5.16: ConSerts for leader and follower configurations

92

Engineering safe fail behavior

Both ConSerts have in common that in order to deliver a guarantee at
all, certain invariants have to be ensured. These include the availability
and a proper setup of the DSRC communication stack, a check whether
the collaboration partner “speaks” the same protocol for the automatic
composition and evaluation of ConSerts and finally a self-check, whether
the OAS itself can provide sufficient information about its realized roles,
configurations and ConSerts. The invariants have been modeled as run-
time evidences, because these are no classical demands to other OAS and
can only be evaluated immediately before a collaboration shall be initi-
ated. Unfortunately, the simulative safety property refinement could not
be carried out for the services get_RoadFrict and get_RoadInc, because
the given computation power for their simulation was not available (re-
fer to Section 5.2.4 for more details). Therefore, their associated safety
demands and guarantees do not have concrete refinement data.

Considering the leader’s ConSert, it becomes apparent that the leader
does neither require any service nor any safety demand from other roles.
This is the case, because the leader is the role with minimum context
knowledge in this scenario and thus only acts as a “data provider”. How-
ever, the leader provides several safety guarantees for each provided ser-
vice with different value deviation ranges. We chose two different guar-
antees per service to increase chances that a collaboration can finally ma-
terialize on highway. In addition, it can be expected that the smaller the
guaranteed value deviations are for the services, the better the functional
performance of the collaboration will be, if an OAS with a compatible
ConSert for the follower role is present at platoon building time.

This performance increase can be observed when looking at the ConSert
of the follower configuration, because the follower role is responsible for
the provision of the application service in the given scenario. The appli-
cation service Safe Platoon Driving can be provided with different guar-
anteed qualities. While safety is guaranteed in both cases, the functional
performance of the collaboration, i.e. the required minimum inter-truck
distance dset as well as the maximum performance loss, vary among the
guarantees. The requirements for the fulfillment of each guarantee are
modeled by two separate ConSert trees (colored blue and orange in Fig-
ure 5.16). While the blue ConSert tree yields the better performance, it
also demands tighter deviation ranges for the leader’s provided speed vL
and brake distance sbrake,L.

The normalized performance values for the minimum required inter-truck
distance have been computed with equal truck parameters for both trucks
as given in Table 5.2. The maximum performance loss represents the addi-
tionally required distance to compensate potential deviations. If the max-
imum performance loss is subtracted from dset, the resulting value of
2.6 meters is the distance that would be safe, if no deviations occurred
at all. The maximum performance loss occurs in the case, where the least
safety-critical deviations are present at the required services of the follower
configuration, i.e. where ∆vL =-4 or -8 km/h and ∆sbrake,L =-2 or -6 m.

93

ConSert derivation

Current speed Road slope Road friction coeff.

90 km/h 0 % 1

Truck mass (incl. cargo) Max. deceleration Follower reaction time

40t 8 m/s² 50 ms

Air resistance area Roll res. coeff. Rot. mass factor

4.68 m² 0.007 1.0

Brake response time Brake dwell time

0.15 s 0.3 s

Table 5.2: Assumed truck parameters for determining the normalized performance

Regarding the goal of the European Truck Platooning Platooning Chal-
lenge [23] that inter-truck distances of around 9 meters should be reached
during the nominal collaboration, it can be stated that the safe distances,
which can be guaranteed for the application service during the occurrence
of deviations, still enable significant fuel-saving.

Since safety guarantees and safety demands conceptually represent safety
requirements, they should in theory have an assigned integrity level, e.g.
an automotive safety integrity level (ASIL), indicating the required con-
fidence with which the requirements have to be fulfilled. However, it is
evident that in the given ConSerts all guarantees and demands have to be
rated with the highest ASIL level D or in theory with 100% required confi-
dence, since every violation of the deviation boundary intervals might yield
a frontal crash causing severe harm.

94

6 Discussion and conclusion

6.1 Summary

In this thesis the Consert approach has been applied and evaluated for
engineering safe collaborations of open adaptive systems. Concretely, the
conducted case study exemplified the approach for truck platooning as an
application scenario for the automotive domain. Since the derivation of
ConSerts in general requires a reference system model before any analysis
of its deviations can be carried out, this thesis was structured according to
these two major activities: Firstly, the specification of a safe nominal be-
havior did explicitly exclude the consideration of failure occurrences and
instead focused on the safety of the intended functionality. The essential
output artifact of the safe nominal behavior specification is the service
architecture describing how the collaboration’s functionality is distributed
among the collaborating OAS and how the resulting collaboration inter-
face formalized in the shape of exchanged services is defined. Secondly,
the effects of random hardware and systematic software failures on the
collaboration have been analyzed and finally constrained as part of the
safe fail behavior specification. These constraints define maximum bound-
aries on safety-critical service deviations, which are documented as quanti-
fied safety properties for each service of the collaboration interface. Finally,
ConSerts have been derived by logically mapping safety guarantees of pro-
vided services of a role configuration to safety demands of its required ser-
vices. The activities and created artifacts of the whole engineering process
are visualized in Figure 6.1.

At the beginning of the safe nominal behavior derivation, we identified
that the results of a preliminary hazard and risk analysis, i.e. potential
collaboration accidents, are required as an essential input to perform a
systematic functional decomposition yielding a safe nominal behavior by
construction. Based on the identified accidents, the collaboration’s state
space has been partitioned into safe and unsafe spaces, where a safe
space is defined physically by so-called safe conditions preventing an acci-
dent if these conditions are fulfilled. Afterwards, the functional decompo-
sition was performed by using a horizontal refinement strategy breaking
down the safe condition’s physical entities both along and against the
signal flow, until concrete measurable system inputs and controllable sys-
tem outputs have been identified. Since the functional model does neither
consider variability aspects of the single OAS nor the inherent functionality
distribution within OAS collaborations, an abstraction layer has been intro-
duced between functional model and concrete truck systems to account
for these aspects. Concretely, this abstraction layer consists of collabora-

95

Summary

tion roles, role configurations (potential adaptation variants of roles) yield-
ing different service interfaces and collaboration scenarios (concrete com-
binations of role configurations for all required roles), which are suitable
for building a reusable domain-specific repository for automotive platoon-
ing in general. Considering concrete collaboration scenarios, the functions
have been systematically deployed to collaboration roles based on a set of
heuristics, which aim on the one hand at keeping the resulting service
interface as slim as possible and on the other hand at producing single
roles taking the majority of functional responsibilities. This approach also
supported the assignment of the collaboration’s safety responsibility to a
single role in the shape of the application service. After having deployed
the functions to roles and their configurations, the service architecture is
completely defined through collaboration scenarios that contain role con-
figurations with well-defined functional service interfaces and functional
responsibilities.

Having defined a safe nominal behavior for platooning through the service
architecture on the domain-level with an agreement between companies
of that domain, the next step was to examine and constrain the impact of
failures on the nominal collaboration. Therefore, a safety analysis of the
collaboration interface’s functional service types has been carried out. The
results of the HAZOP-based analysis led to safety property types defining
qualitative safety-critical deviations of each functional service type. After
the safety-critical deviations have been analyzed qualitatively, they were
quantified through a simulative approach. The quantification procedure
is necessary to define for each safety property type, how much devia-
tion can be tolerated for a service without risking an unsafe collaboration.
The simulative approach required the creation of a simulation model for
platooning in Matlab/Simulink, which was used for the simulation of devi-
ation vectors for all services of the collaboration interface. The simulation
results acted as the basis for the selection of safety property refinements
by choosing those deviation vectors that yielded a safe collaboration dur-
ing simulation. In this way, safety can be guaranteed for a collaboration,
if the service value deviations stay within the specified bounds. In contrast
to functional adaptation variants, which can be expressed through role
configurations, we found that safety property refinements introduce an-
other dimension of variability, where deviation tolerances can be traded
off against the collaboration’s functional performance. Having in place
role configurations with a clearly defined interface of provided and re-
quired services including their refined safety properties, ConSerts are de-
fined as an a part of each role’s system-level safety case containing an
argumentation how safety guarantees are fulfilled by the technical system
implementing the role under the condition that potential safety demands
are fulfilled by other roles. However the technical implementation of role
configurations as well as the creation of the concrete system-level safety
concept/safety case have been out of the thesis scope and are therefore
greyed out in Figure 6.1.

96

Discussion and conclusion

Platooning
Requirements

Collaboration
safe condition(s)

Functional model

Platooning roles, truck
equipment variants,

collaboration scenarios

Service architecture

Preliminary
HARA

Functional
decomposition

Role and truck
platform analysis

Function deployment
to roles for each

collaboration scenario

System inputs
and outputs

Inner
functions

 Collaboration scenarios
 Functional service interfaces

of role configurations
 Functional responsibilities of

roles within collaboraton
scenarios

Safe nominal behavior derivation

Safety-critical
deviation types

(Safety property types)

Safe deviation vectors

Maximum value deviation
bounds for functional services
(Safety Property Refinements)

ConSerts

Service Safety
Analysis

Simulation of
deviation vectors

Selection of concrete
variants of safe

deviation vectors

Logical mapping of safety
guarantees to their required
safety demands for each role

configuration

Safe fail behavior derivation

Service
architecture

Functional
service types

Collaboration
scenarios

including cost-benefit-relation
w.r.t. required additional distance

to still tolerate unsafe vectors

Technical
implementation of

platooning role
configurations

System-level
safety concept

creation

Development time certification
of platooning implementation

w.r.t ConSerts (Safety Case)

Safe platooning
collaboration at runtime

Figure 6.1: Summary of engineering process for safe OAS collaborations

97

Discussion

6.2 Discussion

This section critically discusses, to which degree the thesis goals as set out
in Section 1.3 have been fulfilled. In addition, a selection of interesting
findings and lessons learned are stated and discussed.

Goal 1 – Systematic engineering of safe nominal behavior for the
collaboration between two trucks

The hazard and risk analysis approach as recommended by ISO 26262 is
insufficient for OAS collaborations.

The systematic execution of the preliminary HARA according to ISO 26262
yielded problems, because it is hardly possible to determine, whether
a truck behavior like an acceleration is malfunctioning and thus safety-
critical for the collaboration without the consideration of the other truck’s
behavior, too. In this way, the standard’s recommendation to restrict the
consideration scope of the safety analysis to a single vehicle or its subsys-
tem does not yield valuable results. In addition, failure modes arising from
the collaboration itself, e.g. from the communication infrastructure, are
thus missed, because only the trucks would be considered proper items
in the sense of the standard. Within the case study, the solution approach
for this problem consisted of a change of the safety analysis starting point:
Instead of examining potential safety-critical effects of single truck behav-
iors in certain situations on the collaboration, a shift towards a deductive
viewpoint has been carried out, where the analysis is started at the safety-
critical states of the collaboration and afterwards traced back to each sin-
gle truck being considered.

The functional decomposition is dependent on a successful formal charac-
terization of the collaboration’s safe state space.

For the platooning collaboration, the partitioning of the collaboration’s
state space into safe and unsafe spaces was relatively easy by consider-
ing the inter-truck distance before an emergency braking maneuver of the
platoon as a means for formalizing the state space. Since the distance
is a one-dimensional quantity and the safe space is continuous, a single
mathematical condition is sufficient for a complete safety-specific charac-
terization of the collaboration’s state space, i.e. if the condition is met, the
collaboration is safe, and vice versa. However, it can be expected that a
safety-specific characterization of the collaboration’s state space can be-
come complex for other collaborations. This can happen in particular, if
either multiple potentially non-scalar quantities are needed for a sufficient
formalization of the safe space or if the safe space itself is distributed into
multiple smaller spaces that are not adjoining each other. Apart from the
fact that this might require deep mathematical and physical knowledge,
the amount of required conditions to distinguish a safe from an unsafe col-
laboration state could reach a significant number, if they can be derived at
all. In this regard, basing the functional decomposition on safe conditions

98

Discussion and conclusion

is assessed as a slight drawback of the approach, since it is not known
yet, if the derivation of safe conditions is possible for other collaboration
scenarios.

Detailed and realistic functional models are required for demonstrating
the effectiveness of engineering methods and for a proper interpretation
of prediction results of quality characteristics.

Concretely, the functional decomposition for platooning demanded a de-
cision on how realistic the scenario should be modeled with respect to
physics. The safe condition contains a relation of required stop distances
of both trucks for an emergency braking maneuver to compute a safe dis-
tance. Due to the fact that the stop distance is dependent on the underly-
ing physical model, the potentially usable models range from very simple
to more complex and hence more realistic. Early benchmark computa-
tions with simple truck motion models yielded minimum safe distances
between the trucks larger than 30 meters. These results suggested that
the model was too simple for guaranteeing safe truck platooning with dis-
tances around 9 meters during nominal cruising with speeds of 90 km/h,
which has been set out as a goal for the European Truck Platooning Chal-
lenge [23], into which this thesis was embedded. Consequently, a more
sophisticated non-linear dynamic truck motion model has been developed
that finally yielded a minimum safe distance of 2.6 meters during nom-
inal cruising at speeds of 90 km/h. This result was accepted as realistic
enough, since a game-theoretical approach in [39] yielded comparable
results of 1.2 - 2 meters. For the ability to finally demonstrate whether
the toleration of service failures as part of the ConSert approach yielded
acceptable performance losses still enabling fuel-efficient platooning, the
realistic functional model was mandatory.

The assignment of the application service does not fit into the service
architecture derivation activity.

During the derivation of the service architecture, the reasonable assign-
ment of the application service provision to a specific role proved to be a
difficult task, because the application service is a construct that is in the
first place considered for assigning the responsibility of guaranteeing the
collaboration’s safety to a single role. However, the assignment of the app.
service has an effect only then, when the system-level safety concept has
to be developed for the role taking the safety responsibility. Other than
that, the application service is considered as a root entity for the tech-
nical composition and evaluation of ConSerts at runtime. Although the
construction of a safe nominal behavior is indeed based on safety con-
siderations (=safe conditions), it is questionable, if the application service
provision has to be assigned already to a role during the service architec-
ture derivation for the mentioned reasons. In order to still provide an app.
service assignment in this thesis, the heuristics for the function deploy-
ment to roles were designed in a way so that as much functionality as
possible is deployed to a single collaboration role. This consequently yields

99

Discussion

a single role with maximum context knowledge, which suggests the as-
signment of the safety responsibility and therefore the application service
to that role, too. In this way, this role will have to realize a kind of “ap-
plication service controller” whose inputs are either services provided by
the own OAS platform (sensors or actuators) or services provided by other
roles. The output of such a controller would be a clear decision whether a
safe collaboration can be guaranteed. If this is not the case, it has a second
output that is able to trigger and control a transition to a safe state.

Goal 2 – Methodological derivation and construction of related
ConSerts models for guaranteeing a safe collaboration during
failure

No reasonable quantification strategy has been found for the refinement
of omission safety property types.

Although service deviations due to a permanent omission of the service
provision have been identified as being potentially safety-critical for the
platooning collaboration, no reasonable strategy for their safety property
quantification has been found. We think that permanent omission failures
cannot be safely tolerated without the use of redundancy concepts. How-
ever, redundancy concepts have not been explicitly studied in the course
of this thesis and thus, the reasonable quantification of omission safety
properties stays an open issue.

Numerical simulation as a means for the safety property quantification is
not scalable.

A major drawback of the numerical simulation approach is that each ser-
vice deviation vector, i.e. a set of concrete values for the deviations of all
services of the collaboration interface, has to be simulated in a separate
simulation run. This leads to serious performance problems due to the
required size and granularity of deviation ranges that need to simulated
to perform a reasonable safety property quantification. However, recently
published research in the context of uncertainty handling for input signals
of mixed-signal systems proposed a much more efficient simulation ap-
proach that is based on a symbolic rather than numerical simulation [40].
The approach enables an efficient simulation of a value range for each
signal in one simulation run instead of using concrete values. With respect
to the applicability for the safety property quantification, this means that
one simulation run could suffice for the simulation of the desired value
deviation ranges for all services suggesting a significant performance im-
provement for the quantification procedure.

ConSerts enable a dynamic optimization of runtime qualities.

The possibility to provide varying safety guarantees for a single service
within a ConSert enables a dynamic optimization the overall collabora-
tion’s runtime qualities. This claim is supported by the provided ConSerts
for truck platooning (Section 5.4.2), because the application service can

100

Discussion and conclusion

be provided safely with two guarantees optimizing a different quality
each. While guaranteeing a higher functional performance leads to tighter
boundaries for tolerated service deviations, higher tolerated service devi-
ations in turn cause a degradation of the achievable functional perfor-
mance. With respect to truck platooning, the functional performance can
be expressed through the minimum required inter-truck distance, which
has a direct relation to the saved fuel of the follower truck, since the
lower distance can be maintained safely, the higher the saved fuel will be.
In a similar way, the tolerance of broader or tighter deviation ranges can
be potentially related with required development cost of the systems that
have to provide services with more or less tighter deviation ranges.

The ConSerts for role configurations of concrete collaboration scenarios
should be derived as pre-engineered compatible safety interfaces that en-
able a safe collaboration in a top-down manner.

During the execution of the case study, it was found that ConSerts as
proposed in [5] are capable of serving as more than mere runtime repre-
sentations of conditional safety certificates being issued for finished tech-
nical OAS implementations at development time. In addition, they could
be as well used as an abstraction defining the safety interface of a mod-
ular system-level safety concept that the manufacturer of an OAS has to
adhere to during the technical implementation. This additional use case
however contradicts the notion of [5], where ConSerts are issued for OAS
implementations in a bottom-up manner to prohibit unsafe collaborations
at runtime in the first place. In contrast, the usage of ConSerts as manda-
tory safety interfaces in a top-down manner could be an approach that
rather enables safe collaborations directly from the start of the collabo-
ration engineering on the domain-level. Since the agreement among a
majority of an application domain’s companies upon pre-engineered col-
laboration scenarios is required anyway for bringing the idea of a “safety
domain repository” to success, the safety interface definitions in the shape
of ConSerts could be thus an essential entity of this repository as well.

6.3 Conclusion

This thesis contributed to the body of scientific knowledge in that the Con-
Sert approach as a novel means for the runtime safety assurance of open
adaptive systems has been applied and evaluated for a truck platooning
scenario in the automotive domain. The operationalization of ConSerts
consists of an analysis and restriction of failure-caused system behavior
deviations. It was found that before the operationalization can be carried
out, a nominal and safe description of the intended collaboration behavior
is required, which can act as a reference for the definition of behavioral
deviations. Thus, Chapter 4 provided a detailed guideline for the required
activities to engineer a safe nominal behavior description for truck pla-
tooning being suitable for the subsequent application of the ConSert ap-

101

Future research recommendations

proach. Based on the safe nominal behavior specification in the shape of
a service-oriented architecture, the ConSert approach was finally applied
in Chapter 5.

Regarding limitations of the proposed engineering approach other than
the ones mentioned in the discussion Section 6.2, it can be stated that the
considered platooning scenario only consisted of two collaboration roles
having a relatively low amount of exchanged services. Hence, it is not clear,
whether the guideline application scales properly for collaborations with
more than two roles that have extensive collaboration interfaces. With
respect to a general applicability of the ConSert approach, the lack of
proper quantification strategies for other safety property types than value
deviations is deemed the biggest persistent methodological gap.

In conclusion, this thesis provided on the one hand evidence that the Con-
Sert approach as such can be successfully applied for truck platooning
collaborations. On the other hand, the engineering guidelines that have
been proposed for the specification of safe nominal and safe fail behaviors
comprise a wider scope so that we think they can be easily adapted for
similar automotive collaboration scenarios.

6.4 Future research recommendations

Based on the potential usage of ConSerts as top-down safety interfaces
on the domain level as proposed in Section 6.2, a possible area for future
research could be a further investigation of how concrete technical real-
izations and system-level safety concepts can be developed for the truck
platooning collaboration. In addition, this approach would give evidence
about the suitability of the derived domain-level artifacts in this thesis for
the concrete realization of OAS.

Further, as motivated in Section 6.2, the evaluation of the symbolic simula-
tion approach proposed in [40] is recommended for the future to improve
the simulation performance of the safety property quantification proce-
dure.

Lastly, an area of future work that is in particular interesting for practi-
tioners could be the integration of the ConSert approach into common
tool chains for model-based safety assurance. This includes a dedicated
support for modeling both safe nominal and safe fail behavior specifica-
tions, where an integration with simulation tools like Matlab/Simulink is
considered beneficial.

102

References

[1] H. Proff, J. Schönharting, D. Schramm, and J. Ziegler, eds., Zukünftige Entwicklungen
in der Mobilität. Springer Science + Business Media, 2012.

[2] McKinsey, “Delivering Change - Study on the future of commercial vehicles,” 2016.
https://www.mckinsey.de/deliveringchange – Accessed: 16.09.2016.

[3] S. Kemmann, SAHARA - A Structured Approach for Hazard Analysis and Risk Assess-
ments. PhD thesis, University of Kaiserslautern, 2015.

[4] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A New Component Concept for Fault
Trees,” in Proceedings of the 8th Australian Workshop on Safety Critical Systems and
Software - Volume 33, SCS ’03, (Darlinghurst, Australia, Australia), pp. 37–46, Aus-
tralian Computer Society, Inc., 2003.

[5] D. Schneider, Conditional Safety Certification for Open Adaptive Systems. PhD thesis,
University of Kaiserslautern, 2014.

[6] M. Jamshidi, “System of systems engineering - New challenges for the 21st century,”
IEEE Aerospace and Electronic Systems Magazine, vol. 23, pp. 4–19, may 2008.

[7] M. Jamshidi, Systems of Systems Engineering: Principles and Applications. CRC Press,
2008.

[8] M. DiMario, J. Boardman, and B. Sauser, “System of systems collaborative formation,”
IEEE Systems Journal, vol. 3, pp. 360–368, sep 2009.

[9] “ETSI EN 302 665 – Intelligent Transport Systems (ITS); Communications Architec-
ture,” Standard, European Telecommunications Standards Institute, 2010.

[10] “ETSI TS 102 637 – Intelligent Transport Systems (ITS); Vehicular Communications; Ba-
sic Set of Applications - Part 1 to 4,” Standard, European Telecommunications Stan-
dards Institute, 2010.

[11] “SAE J 2945/1 – On-Board System Requirements for V2V Safety Communications,”
Standard, Society of Automotive Engineers, 2016.

[12] “SAE J 2735 – Dedicated Short Range Communications (DSRC) Message Set Dictio-
nary,” Standard, Society of Automotive Engineers, 2016.

[13] H. Foster, A. Mukhija, D. S. Rosenblum, and S. Uchitel, “A Model-Driven Approach to
Dynamic and Adaptive Service Brokering Using Modes,” in Lecture Notes in Computer
Science, pp. 558–564, Springer Science + Business Media.

[14] M. Röckl, J. Gacnik, and J. Schomerus, “Integration of Car-2-Car Communication as a
Virtual Sensor in Automotive Sensor Fusion for Advanced Driver Assistance Systems,”
in Proceedings. Springer Automotive Media. FISITA 2008, 2008.

103

https://www.mckinsey.de/deliveringchange

REFERENCES

[15] M. Wagner, D. Zobel, and A. Meroth, “SODA: Service-Oriented Architecture for Run-
time Adaptive Driver Assistance Systems,” in 2014 IEEE 17th International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing, Institute of
Electrical and Electronics Engineers (IEEE), jun 2014.

[16] Object Management Group (OMG), “Service Oriented Architecture Modeling Lan-
guage (SoaML),” 2012.
http://www.omg.org/spec/SoaML/ – Accessed: 29.10.2016.

[17] D. Schneider and M. Trapp, “Engineering Conditional Safety Certificates for Open
Adaptive Systems,” IFAC Proceedings Volumes, vol. 46, no. 22, pp. 139–144, 2013.

[18] C. Bergenham, H. Pettersson, E. Coelingh, C. Englund, S. Shladover, and S. Tsugawa,
“Overview of platooning systems,” in Proceedings of 19th ITS World Congress, Oct
22-26, Vienna, Austria, 2012.

[19] J. Axelsson, “Safety in Vehicle Platooning: A Systematic Literature Review,” IEEE Trans-
actions on Intelligent Transportation Systems, pp. 1–13, 2016.

[20] J. Nilsson, C. Bergenhem, J. Jacobson, R. Johansson, and J. Vinter, “Functional Safety
for Cooperative Systems,” in SAE Technical Paper Series, SAE International, apr 2013.

[21] C. T. Featherstone and M. V. Lowson, “Safety of automated passenger vehicle pla-
tooning,” in Proceedings of the 12th World Congress on Intelligent Transport Systems,
2005.

[22] C. Heinzemann, D. Schubert, S. Dziwok, U. Pohlmann, C. Priesterjahn, C. Brenner, and
W. Schäfer, “Railcab convoys: An exemplar for using self-adaptation in cyber-physical
systems,” tech. rep., Software Engineering Group, Heinz Nixdorf Institute, University
of Paderborn, 2015.

[23] Dutch Government, “European Truck Platooning Challenge,” 2016.
https://www.eutruckplatooning.com/ – Accessed: 14.09.2016.

[24] Springer Professional, “Europäische Kolonnenfahrt zeigt Potenziale der Lkw-
Vernetzung,” 2016.
https://www.springerprofessional.de/nutzfahrzeuge/automatisiertes-

fahren/europaeische-kolonnenfahrt-zeigt-potenziale-der-lkw-

vernetzung/9975176 – Accessed: 16.09.2016.

[25] Straßenverkehrsordnung Deutschland (StVO), “Mindestabstand auf Autobahnen nach
§ 4 Abs. 3.”

[26] Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, “Automotive Intelli-
gent User Interfaces (IUI).”
http://automotive.dfki.de/content/index.php/de/technology/driver-

assistance-systems-adas – Accessed: 29.10.2016.

[27] “ISO 26262:2011 – Road vehicles – Functional safety,” Standard, International Orga-
nization for Standardization, Geneva, Switzerland, 2011.

104

http://www.omg.org/spec/SoaML/
https://www.eutruckplatooning.com/
https://www.springerprofessional.de/nutzfahrzeuge/automatisiertes-fahren/europaeische-kolonnenfahrt-zeigt-potenziale-der-lkw-vernetzung/9975176
https://www.springerprofessional.de/nutzfahrzeuge/automatisiertes-fahren/europaeische-kolonnenfahrt-zeigt-potenziale-der-lkw-vernetzung/9975176
https://www.springerprofessional.de/nutzfahrzeuge/automatisiertes-fahren/europaeische-kolonnenfahrt-zeigt-potenziale-der-lkw-vernetzung/9975176
http://automotive.dfki.de/content/index.php/de/technology/driver-assistance-systems-adas
http://automotive.dfki.de/content/index.php/de/technology/driver-assistance-systems-adas

REFERENCES

[28] R. Adler, P. Feth, and D. Schneider, “Safety Engineering for Autonomous Vehicles,”
in 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshop (DSN-W), Institute of Electrical and Electronics Engineers (IEEE),
2016.

[29] H.-L. Ross, Functional Safety for Road Vehicles. Springer Nature, 2016.

[30] R. J. R. Back and K. Sere, “Superposition refinement of reactive systems,” Formal
Aspects of Computing, vol. 8, pp. 324–346, may 1996.

[31] E. Hoepke and S. Breuer, eds., Nutzfahrzeugtechnik. Springer Nature, 2016.

[32] H. Winner, S. Hakuli, F. Lotz, and C. Singer, eds., Handbuch Fahrerassistenzsysteme.
Springer Science + Business Media, 3 ed., 2015.

[33] M. McIntyre, T. Ghotikar, A. Vahidi, X. Song, and D. Dawson, “A Two-Stage Lyapunov-
Based Estimator for Estimation of Vehicle Mass and Road Grade,” IEEE Transactions
on Vehicular Technology, vol. 58, pp. 3177–3185, sep 2009.

[34] Continental, “New sensor fusion approach recognizes rain, snow and ice on the
road,” 2010.
http://www.continental-corporation.com/www/pressportal_com_en/

themes/press_releases/3_automotive_group/interior/press_releases/

pr_2010_10_12_sensorfusion_en.html – Accessed: 18.11.2016.

[35] P. Feth and R. Adler, “Service-based Modeling of Cyber-Physical Automotive Systems:
A Classification of Services,” in Workshop CARS 2016 – Critical Automotive applica-
tions: Robustness & Safety (M. Roy, ed.), 2016.

[36] F. Möhrle, M. Zeller, K. Höfig, M. Rothfelder, and P. Liggesmeyer, “Automating Com-
positional Safety Analysis Using a Failure Type Taxonomy for Component Fault Trees,”
in Risk, Reliability and Safety: Innovating Theory and Practice (Walls, Revie & Bedford,
ed.), Taylor and Francis Group, 2017. Pre-print version.

[37] MathWorks, “Matlab/Simulink - Simulation Perfomance Modes,” 2016.
https://de.mathworks.com/help/simulink/ug/how-the-acceleration-

modes-work.html – Accessed: 03.12.2016.

[38] C. Gold, D. Dambock, L. Lorenz, and K. Bengler, “"Take over!" How long does it
take to get the driver back into the loop?,” Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 57, pp. 1938–1942, sep 2013.

[39] A. Alam, A. Gattami, K. H. Johansson, and C. J. Tomlin, “Guaranteeing safety for
heavy duty vehicle platooning: Safe set computations and experimental evaluations,”
Control Engineering Practice, vol. 24, pp. 33–41, mar 2014.

[40] C. Radojicic, Symbolic Simulation of Mixed-Signal Systems with Extended Affine Arith-
metic. PhD thesis, University of Kaiserslautern, 2016.

105

http://www.continental-corporation.com/www/pressportal_com_en/themes/press_releases/3_automotive_group/interior/press_releases/pr_2010_10_12_sensorfusion_en.html
http://www.continental-corporation.com/www/pressportal_com_en/themes/press_releases/3_automotive_group/interior/press_releases/pr_2010_10_12_sensorfusion_en.html
http://www.continental-corporation.com/www/pressportal_com_en/themes/press_releases/3_automotive_group/interior/press_releases/pr_2010_10_12_sensorfusion_en.html
https://de.mathworks.com/help/simulink/ug/how-the-acceleration-modes-work.html
https://de.mathworks.com/help/simulink/ug/how-the-acceleration-modes-work.html

A Appendix

A.1 Differential equations mathematical solution

This section shall give some more insight on the mathematical derivation
of explicit solutions for the differential equations for the different braking
phases of an emergency braking maneuver as defined in Section 5.2.2.
The now generalized 1st order, 2nd degree inhomogeneous differential
equations (DE) with constant coefficients are given in equations (A.1) –
(A.3).

v′(t) =


K1 · v2(t) +K2 0 ≤ t ≤ t1 (A.1)

K1 · v2(t) +K3 · t+K2 t1 < t < t2 (A.2)

K1 · v2(t) +K4 t2 ≤ t ≤ t3 (A.3)

with Ki = contants

While equations (A.1) and (A.3) have exactly the same shape apart from
different constants, (A.2) contains an additional term linear in t. In general
it can be said that the solution procedure as well as the explicit solution of
DEs of the shape v′(t) = K1 ·v2(t)+K2 ·t+K3 is much more complex than
those of DEs of the shape v′(t) = K1 · v2(t) + K2, which will be shown
in the following. Both solutions have been validated for their correctness
with the mathematical toolboxes of Matlab and Wolfram’s Mathematica
to make sure the platooning system’s realization in Matlab/Simulink is cor-
rect from a mathematical point of view.

Solution procedure for DE v′(t) = K1 · v2(t) + K2

v′ = K1 · v2 +K2

Separation of variables yields:

dv =
(
K1 · v2 +K2

)
dt

⇔ dv = K2 ·
(

1 +
K1

K2
· v2
)

dt

⇔

√
K1

K2
dv

1 +
(√

K1

K2
· v
)2 = ±

√
K1 ·K2dt

107

Differential equations mathematical solution

Substitution of

√
K1

K2
→ ω:

dω
1 + ω2

= ±
√
K1 ·K2dt

Given
dω

1 + ω2
= arctan′(ω), the integration of both sides yields:

arctan(ω) + C1 = ±
√
K1 ·K2 · t+ C2

⇔ ω = tan
(
±
√
K1 ·K2 · t+ C2 − C1

)
⇔ ω = tan

(
±
√
K1 ·K2 · t+ C3

)
with C3 = C2 − C1

Back-Substitution of ω with the negative solution (we are braking!):

v(t) =

√
K2

K1
· tan

(
−
√
K1K2 · t+ C3

)
C3 can be determined with the intial condition v(0) = v0

and yields the explicit solution for v(t):

v(t) = −
√
K2

K1
· tan

(
−
√
K1K2 · t− arctan

(
K1

K2
· v0
))

Integration over time with the intial condition s(0) = 0

yields the explicit solution for s(t) with only known constants:

s(t) = −
ln
(
| cos

(√
K1K2 · t

)
+ K1

K2
· v0 · sin

(√
K1K2 · t

)
|
)

K1

Solution procedure for DE v′(t) = K1 · v2(t) + K2 · t + K3

The solution procedure for the given DE is not carried out analytically
here, since the explicit solution alone is filling approximately a single page
alone. However, some information on the solution steps will be neverthe-
less given in the following.

The given DE is a specific form of Riccati’s differential equation:

v′(t) = q(t)v2(t) + p(t)v(t) + f(t) Riccati DE

with q(t) = K1, p(t) = 0, f(t) = K2 · t+K3

The application of any of both Riccati transformation theorems

u(t) = e
∫
q(t)v(t)dt = eK1

∫
v(t)dt 1st Riccati theorem

v(t) = − u′(t)

u(t)q(t)
= − u′(t)

u(t)K1
2nd Riccati theorem

yields the 2nd-order general homogeneous DE:

u′′ −
(
p+

q′

q

)
u′ − fqu = 0

which is for the concrete scenario constants defined as:

u′′ − (K1K2 · t+K1K3) · u = 0 (A.4)

108

Appendix

Two linearly independent explicit solutions of the DE u′′−x ·u = 0 are the
Airy functions of first and second kind.

Ai(x) =
1

π

∫ ∞

0

cos

(
t3

3
+ xt

)
dt Airy 1st kind

Bi(x) =
1

π

∫ ∞

0

(
exp

(
− t

3

3
+ xt

)
+ sin

(
t3

3
+ xt

))
dt Airy 2nd kind

Due to the specific form of x = K1K2 · t + K1K3 in (A.4) and in par-
ticular its dependency on t, the explicit solution for equation (A.4) is a
linear combination of the airy functions Ai(x) and Bi(x) as well as their
derivatives Ai′(x) and Bi′(x). The now existing but very complex explicit
solution of u(t) can be substituted back with the (1st Riccati theorem),
which contains

∫
v(t) = s(t), where s(t) is the final solution for the stop

distance that we wanted to compute.

Note that Matlab contains implementations of the Airy functions and their
derivatives in its mathematical toolbox, so their usage can be realized in
Simulink with a “Matlab Function Block”.

109

Supplementary material

A.2 Supplementary material

This section provides some additional material for the chapters of this the-
sis in an unordered way. At the respective locations of the thesis, the ma-
terials are referenced.

Figure A.1: Safety property types of service types get_RoadFrict and get_RoadInc

110

Appendix

Figure A.2: Simulink model of drivers, trucks, environment (top) and platooning system (bot-
tom)

111

	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Thesis goals
	1.4 Thesis structure

	2 Related work
	2.1 Open adaptive systems
	2.1.1 Definition of OAS
	2.1.2 Transition from closed to open adaptive systems
	2.1.3 Service architectures

	2.2 Conditional safety certification (ConSerts)
	2.2.1 Overview
	2.2.2 Operationalization of ConSerts
	2.2.3 Validation of the ConSert approach
	2.2.4 Engineering of ConSerts

	2.3 Truck platooning
	2.3.1 Research projects
	2.3.2 Truck platooning safety

	3 Solution overview
	3.1 Running example
	3.1.1 Truck platooning scenario description
	3.1.2 Scenario constraints

	3.2 Solution big picture
	3.2.1 Safe nominal behavior specification
	3.2.2 Safe fail behavior specification

	4 Engineering safe nominal behavior
	4.1 Preliminary hazard and risk analysis
	4.1.1 Problems of conventional HARA for OAS
	4.1.2 Platooning safe condition derivation

	4.2 Functional decomposition
	4.2.1 Decomposition strategy
	4.2.2 Platooning system decomposition

	4.3 Role and configuration analysis
	4.3.1 Role and configuration concept
	4.3.2 Platooning configuration analysis
	4.3.3 Platooning configuration selection

	4.4 Function deployment
	4.4.1 Deployment strategy
	4.4.2 Platooning function deployment

	4.5 Service architecture derivation
	4.5.1 Generic collaboration service architecture
	4.5.2 Platooning service architecture

	5 Engineering safe fail behavior
	5.1 Service safety analysis
	5.1.1 Safety analysis for OAS collaborations
	5.1.2 Platooning safety property definition

	5.2 Simulative safety property quantification
	5.2.1 Quantification concept
	5.2.2 Physical model building of a truck
	5.2.3 Realization in Matlab/Simulink
	5.2.4 Simulation results

	5.3 Collaboration safety concept
	5.4 ConSert derivation
	5.4.1 Transition from domain to systems engineering
	5.4.2 Platooning ConSerts definition

	6 Discussion and conclusion
	6.1 Summary
	6.2 Discussion
	6.3 Conclusion
	6.4 Future research recommendations

	References
	A Appendix
	A.1 Differential equations mathematical solution
	A.2 Supplementary material

