On the Transition from Design Time to Runtime Model-Based
Assurance Cases

Ran Wei

University of York
United Kingdom
ran.wei@york.ac.uk

Tim Kelly
University of York
United Kingdom
tim.kelly@york.ac.uk

ABSTRACT

System assurance cases are used to demonstrate confidence in
system properties of interest (e.g. safety and/or security). They
are key artefacts for safety and/or security acceptance for systems
before they become operational.

Cyber-Physical Systems (CPS) form a new technological frontier
for their vast economic and societal potentials in various domains.
CPS are often safety-critical systems. Thus, their safety and/or
security need to be assured using system assurance cases. However,
due to the open and adaptive nature of CPS, the need for system
assurance at runtime is imperative.

Therefore, assurance cases are expected to be exchanged, inte-
grated and verified at runtime to ensure the dependability of CPS
when they intend to execute a cooperative behaviour.

In this position paper, we identify the importance of model-based
system assurance, we discuss the paradigm shift of assurance cases
from being manually created artefacts to (semi-)automatically cre-
ated models. We discuss the application of model-based assurance
cases in ensuring the dependability of CPS.

CCS CONCEPTS

« General and reference — Reliability;

KEYWORDS

Model Driven Engineering, Models at Runtime, Structured Assur-
ance Case Metamodel, System Assurance

1 INTRODUCTION

Systems/services used to perform critical functions require justi-
fications that they exhibit necessary properties (i.e. safety and/or
security). Assurance cases provide an explicit means for justifying
and assessing confidence in these critical properties. An assurance
case is a document that facilitates information exchange between
various system stakeholders (e.g. between operator and regulator),
where the knowledge related to the safety and/or security of the
system is communicated in a clear and defendable way [1]. As-
surance cases are key artefacts for safety/security acceptance for
systems/services before they become operational.

Jan Reich
Fraunhofer Institute for Experimental
Software Engineering (IESE)
Germany
jan.reich@iese.fraunhofer.de

Simos Gerasimou
University of York
United Kingdom
simos.gerasimou@york.ac.uk

The physical and digital worlds are gradually merging into a
largely connected globe. This is backed by the emergence of con-
cepts such as Cyber-Physical Systems (CPS). Openness and adaptiv-
ity are core properties of CPS as constituent systems dynamically
connect to each other and have to adapt to a changing context at
runtime [2]. CPS harbour the potential for vast economic and soci-
etal impact in domains such as automotive, health care, and home
automation due to their open and adaptive nature [3]. The majority
of application domains of CPS are safety-critical, such as car2car
scenarios and collaborative autonomous mobile systems. If these
systems fail, they may cause harm and lead to temporary collapse
of important infrastructures, with catastrophic consequences for
industry and society. Therefore, it is imperative to ensure the de-
pendability of CPS in order to realise their full potential. However,
the open and adaptive nature of CPS poses significant challenges
to assuring such systems, as it is nearly impossible to anticipate
the concrete CPS structure, its capabilities and the environmental
context sufficiently at design time.

Therefore, existing design time system assurance activities are
inappropriate to enable dynamic system assurance for CPS at run-
time. Thus, a paradigm shift for system assurance activities from
design time to runtime is needed to assure dependability properties
of CPS. One important aspect of this shift is the transition from
design time assurance cases crafted from manually created docu-
ments to runtime assurance case models being (semi-)automatically
synthesized and evaluated.

In this position paper, we discuss the notion of assurance cases
and the importance of a model-based approach in system assurance,
motivated by open adaptive safety-related systems. We discuss the
state of practice in system assurance cases and the importance of
system assurance case models@runtime for CPS. We discuss in
detail our vision of runtime system assurance cases and how they
help CPS to reason about the safety and/or security at runtime
by themselves. We point out potential research directions towards
model-based system assurance at runtime.

2 ASSURANCE CASES

The concept of assurance cases has been long established in the
safety-related domain, where the term safety case is normally used.
For many industries, the development, review and acceptance of a
safety case are key elements of regulatory processes. This includes



MRT’18, October 2018, Copenhagen, Denmark

G1

Ran Wei, Jan Reich, Tim Kelly, and Simos Gerasimou

OnBoard functions are acceptably

safe

=)

G2 G3

Processes according to Safety
Integrity Level (SIL) 4 have been
applied

v

G4 G5

The Emergency Brake Command
function has been developed
according to SIL 4 processes

Sn1 Sn2

Safety case (including
evidences of quality
management and
safety management)

System remains safe in the event of
single random hardware faults

The Emergency Brake Command
function remains safe in case of
single random hardware faults

Architectural design (e.g.
showing transmission of
the Emergency Brake
command singal via both
ways bus communication
and hard-wired)

»

G6

Hazard Rate of on-board functions
("trusted" parts) <= 0.67e-09/h has
been demonstrated

v

G7

Hazard Rate of hazardous events of
the Emergency Brake Command
function <=0.067e-09/h has been
demonstrated

Sn3

Quantitative fault tree
analysis of the Top Events"
Emergency Brake not or too
late commanded when
required” and "Emergency
Brake commanded when
not required”

Figure 1: An example GSN safety case for the European Train Control Systems (ETCS5).

the nuclear [4], defence [5], civil aviation [6] and railway [7] indus-
tries. The concept of safety case is defined in [8] as follows: A safety
case communicates a clear, comprehensible and defensible argument
that a system is acceptably safe to operate in a particular context.
Historically, safety arguments were typically communicated in
safety cases through free text. However, problems are experienced
when text is the only medium available for expressing complex
arguments [8]. One problem of using free text is that if the lan-
guage used in the text is unclear and poorly structured, there is no
guarantee that system engineers would produce safety cases with
clear and well-structured language. To overcome these problems,
graphical argumentation notations were developed. Graphical ar-
gumentation notations are capable of explicitly representing the
elements that form a safety argument (i.e. requirements, claims, ev-
idence and context), and the relationships between these elements
(i.e. how individual requirements are supported by specific claims,
how claims are supported by evidence and the assumed context
that is defined for the argument). Amongst the graphical notations,
the Goal Structuring Notation (GSN) [9] has been widely accepted
and adopted [10]. The key benefit experienced by companies/organ-
isations of adopting GSN is that it improves the comprehension of
the safety argument amongst all key project stakeholders, therefore
improving the quality of the debate and discussion amongst the

stakeholders and reducing the time taken to reach agreement on
the argument approaches being adopted. An example safety case
created using GSN is provided in Figure 1[? ]. It can be seen that
graphical argumentation notations make it easier to identify safety
goals and evidence/artefacts that satisfy those goals.

The concept of structured argumentation is also used in other
domains, particularly for demonstrating system security [11]. Thus,
the term Assurance Case is a broader definition, that an assurance
case is used to demonstrate confidence in system safety and/or
security.

3 MODEL-BASED ASSURANCE CASES

In the current state of practice, assurance cases are manually created
documents rather than models. This is due to the nature of the
intended usage of assurance cases — that they are meant to be
reviewed by safety/security experts and are used to improve the
quality of discussion.

In recent years there has been a tendency for system assurance
tools to adopt Model-Driven Engineering (MDE) in order to benefit
from improved efficiency and consistency provided by MDE. In
[12], the authors identified the need for model-based solutions for
GSN pattern instantiation. GSN patterns are abstract safety case
templates which capture good practice of system assurance, and



On the Transition from Design Time to Runtime Model-Based Assurance Cases

SACM
Base AssuranceCase
Artifact Argumentation Terminology

Figure 2: Packages of SACM

can be instantiated by linking system information (model) with
the elements in the GSN pattern to create a concrete safety case.
The authors proposed the use of an intermediate model called the
weaving model to link external model elements with GSN model
elements for pattern instantiation.

To promote standardisation and interoperability, the Object Man-
agement Group (OMG) specified and issued the Structured Assur-
ance Case Metamodel (SACM) [13]. SACM provides a sound solution
for model-based system assurance case construction, in the sense
that it provides mechanisms to model evidence and related infor-
mation used in a structured assurance case. As shown in Figure 2,
SACM provides packages that allow practitioners to group their
structured argumentations (via the Argumentation package), cor-
responding evidences (via the Artifact package) and controlled
languages (via the Terminology) into atomic packages, and incor-
porates them into assurance case packages. In this sense, SACM
is more powerful than GSN for its ability to reference and relate
various kinds of artefacts (e.g. system design models) and its ability
to use controlled vocabularies.

In summary, in the current state of practice, assurance cases are
still manually created design time documents to certify the safety
and/or security of systems. There are tools that adopt MDE to aid
the creation of assurance cases. The Structured Assurance Case
Metamodel (SACM) is still in its infancy and there is currently no
tool available implementing SACM.

4 THE NEED FOR MODEL-BASED
ASSURANCE CASES AT RUNTIME

It can be seen that MDE factors in approaches for system assurance
mainly focusing on exploiting the benefits of MDE for improved
efficiency and automation. However, the increasing complexity of
Cyber-Physical Systems (CPS) boosts the need for model-based
approaches for system assurance. The premise of pervasive appli-
cations of CPS to realise its economic and societal impact is that
the safety and/or security of CPS are ensured, so that failures of
such systems do not cause damage of different severities (ranges
from moderate to catastrophic).

CPS are typically loosely connected systems and come together
as temporary configurations of constituent systems, which dissolve
and give place to other configurations. Therefore, the configurations
a CPS may assume over its lifetime are unknown and potentially

MRT’18, October 2018, Copenhagen, Denmark

infinite. This makes currently available approaches for system as-
surance insufficient to assure the safety and/or security of CPS, due
to the fact that system assurance activities are typically required at
runtime for CPS.

Runtime system assurance for CPS has been identified as one
of the major challenges towards the application of CPS [2, 3]. One
common vision toward runtime system assurance is the exchange
of models@runtime, which is the upcoming paradigm for the de-
velopment of CPS. As it is not possible to anticipate the runtime
context for CPS at design time, Models@Runtime follows the idea
of making important models available at runtime in order to enable
the system itself to reflect on its current (safety) state based on
monitoring the runtime context. By generating context-awareness
in this manner, potentially required adaptation strategies can be
planned and executed in order to maintain safe or achieve optimized
CPS behaviour.

SafetyCertificate@Runtime

AssuranceCase@Runtime
V&V-Model@Runtime
HRA@Runtime

Figure 3: Models@Runtime on different abstraction levels.

In [2], the authors identified models on four abstraction levels,
which can be exchanged at runtime, as shown in Figure 3. The
most abstract model that CPS can exchange are safety certificate
models. The idea of certification at runtime was introduced in [14].
Safety certificates at runtime describe a formal safety interface
using contract-like interface specifications defining, which safety
properties can be guaranteed by the system under the assumption
that specific safety demands are fulfilled by the integration context.
In [15], the authors introduce a concrete form of runtime safety
certificates called Conditional Safety Certificates (ConSerts), which
are modular and contract-based definitions of safety certificates
factoring in variants through Boolean mappings between different
sets of safety guarantees and demands.

Sometimes it is imperative to know at runtime, how a CPS
reaches the conclusion that the safety properties provided at run-
time are guaranteed. In such cases, it is necessary to exchange
assurance case models at runtime, such that the argumentation
leading to the guarantees of the safety properties can be accessed
and reviewed in an automated way.

In case the system adaptations lead to invalid evidence, a re-
validation of evidence can be triggered at runtime. This implies that
a set of pre-defined V&V (Verification & Validation) activities need
to be performed at runtime. V&V models can be used to execute
V&V activities (regression testing, generation of test cases, etc.)
at runtime. However, it is a significant challenge to have V&V
models at runtime, typically because it is a rather difficult step for
developers at development time, the difficulties to shift this step to
runtime would be multi-fold. In addition, it is almost impossible
to perform extensive V&V activities at runtime, provided that real
time requirements may be in place for CPS.



MRT’18, October 2018, Copenhagen, Denmark

Ran Wei, Jan Reich, Tim Kelly, and Simos Gerasimou

’ Base::ArtifactElement |

AN

+implements| 1

—

+interface
0..*

AssuranceCasePackagelnterface B AssuranceCasePackage

0..*

+assuranceCasePackage

+participantPackage R..*

AssuranceCasePackageBinding

inologyPack
+terminologyPackage Terminology::TerminologyPackage |
0.*

+argumentPackage|[0..*

*

+artifactPackage | 0..

Argumentation::ArgumentPackage |

’Artifact::ArtifactPackage |

Figure 4: An overview of the structure of an assurance case.

If requirements are modified at development, from a safety en-
gineering perspective, Hazard Analysis and Risk Assessment ac-
tivities (HARA) need to be performed. Hence, the idea of HARA
models at runtime. However, since HARA is a very creative process
and often relies on the experience of system safety experts, it is
very unlikely that HARA can be performed at runtime.

Apart from the works previously mentioned on safety certificate
models at runtime, no work has been done in the line of assurance
case models at runtime. This is due to the fact that system engineers
still perceive assurance cases as design time artifacts. However, as
discussed in this section, the need for assurance case models at
runtime is imperative.

5 SACM TOWARDS RUNTIME ASSURANCE
CASE MODELS

In this section, we discuss the intended usage of Structured As-
surance Case Metamodel (SACM) since we have been involved, to
a large extent, in the specification of SACM, and it has not been
sufficiently explained since the release of SACM v2.0.

In SACM, an assurance case model contains a number of pack-
ages as shown in Figure 4. SACM organises assurance cases in
packages to promote modularity. An assurance case package can
contain a number of argument packages, artifact packages and ter-
minology packages. Argument packages store information about
the argumentation part of an assurance case, where safety/secu-
rity claims are broken down into sub claims until they are directly
backed by evidence.

Evidence used in the argument packages can be modeled and
organised in artifact pakcages. For example, a hazard analysis model
can be recorded in an artifact package, the user may also specify
when the analysis is performed, who participated in the analysis
process and what techniques are used in the process.

SACM also provides the mechanisms to create controlled natural
languages so that the users can establish a finer grade of reference
to system models. The terminology package of SACM provides
the mechanisms to create Expressions, Categories and Terms. An
example of controlled language is shown in Figure 5. The upper
part of the figure is a claim: Hazard H1 is sufficiently mitigated.

Hazard H1 is sufficiently mitigated.
f \ AN
:Category :Term :Expression
value:Hazard value:H1 value:

externalReference: externalReference: sufficiently mitigated

resource/hazard_log.ecore resource/hazard_log.model

A
element
element
element

:Expression

value:
Hazard H1 is sufficiently mitigated

Figure 5: An example of controlled terminology

In this claim, the user can refer to expression elements in their
terminology packages. For example, Hazard may refer to a Cate-
gory in the terminology package, which in turn points to a hazard
log meta-model through its externalReference property. In this way,
hazard log meta-model provides a definition of what a Hazard is.
Then, hazard HI can refer to a Term in the terminology package,
which in turn refers to an instance hazard log model (that conforms
to the hazard log meta-model). The hazard log model may then
contain information on how H1 is identified, its causes and conse-
quences, etc. The Expression sufficiently mitigated is recorded in
the terminology package so that it can be reused. The user is also
free to add any explanatory information to the Expression so that it
better explains what sufficiently mitigated means. Finally, an overall
Expression which references the three previous elements is created.
This expression can be referenced in the argumentation package
(e.g. as a description of a Claim).

SACM promotes modularity, in the sense that elements are or-
ganised in different packages. To refine modularity, SACM provides
three different types of packages. Figure 6 shows a segment of the
meta-model for the argument package of SACM, illustrating the
three types of packages in the argumentation package of SACM.
ArgumentPackage is the main package in which structured argumen-
tation is stored. The users can disclose part of the argumentation



On the Transition from Design Time to Runtime Model-Based Assurance Cases

‘«enumeration’»
AssertionDeclaration

Base: ArtifactElement

7A)

enumeration literals
izseeci:esipporl ArgumentGroup +argumentationElement (0.
assumed >
axiomatic ArgumentationElement
defeated +argumentationElemen
asCited 0.*

ArgumentPackagelnterface [+implements| ArgumentPackage

1 L

+participantPackage 12, *% sstructure ]0..1

Assertion

ArgumentPackageBinding

atiributes
+assertionDeclaration : AssertionDeclarat

Figure 6: Argumentation packages.

externally with the use of ArgumentPackagelnterfaces. To do this,
in ArgumentPackagelnterfaces, citation elements need to be cre-
ated which cite to original elements in ArgumentPackages. Figure 7
shows a segment of SACM for the citation mechanism. All SACMEle-
ments have the capability of citing other SACMElements via the
+citedElement reference. If an element cites another, it automatically
becomes abstract and citation via its +isAbstract and +isCitation
features. ArgumentPackagelnterface only contains citation elements,
it should be enforced by constraints on the meta-model.

—

SACMElement
attributes +abstractForm
+gid : String [0..1] 0.1

+isCitation : boolean [0..1] = false
+isAbstract : boolean [0..1] = false

)

Figure 7: Citation mechanism of SACM.

+citedElement 0..1

:ArgumentPackage :ArgumentPackagelnterface

Name: ETCS On-Board
Safety Case

Name: ETCS On-Board
Safety Case Interface

argumentationElement

3 4
argumentationElement argumentationElement
A A
:Claim :Claim

citedElement

Name: C1 Name: C1

Description: On-board functions |+ isCitation: true

are acceptably safe Description: On-board functions
are acceptably safe

Figure 8: An example ArgumentPackagelnterface.

An example use of ArgumentPackagelnterface is illustrated in
Figure 8, this example is taken from the DEIS project [3] for the
ETCS (European Train Control System) use case. The ETCS use case

MRT’18, October 2018, Copenhagen, Denmark

contains a CPS examined in the DEIS project, which consists of two
major constituent systems at runtime: the on-board system which
is installed on trains and the trackside system, which is installed on
important nodes at the track side (such as stations and junctions).
The left-hand side of the figure shows the ArgumentPackage of
the ETCS on-board system (only top level Claim is shown here).
The right-hand side of the figure shows the ArgumentPackageln-
terface, where a citation Claim is created to cite Claim C1 in the
ArgumentPackage.

ArgumentPackageBinding is used to bind ArgumentPackages to-
gether by referencing elements stored in their ArgumentPackageln-
terfaces. To integrate ArgumentPackages, integration engineer needs
to create an ArgumentPackageBinding, and create again citation el-
ements in the ArgumentPackageBinding, which in turn cite the
elements in ArgumentPackagelnterfaces from the ArgumentPack-
ages. An example of the use of ArgumentPackageBinding is shown
in Figure 9.

:ArgumentPackage :ArgumentPackagelnterface
Name: ETCS On-Board Name: ETCS On-Board
Safety Case %! Safety Case Interface
argumentationElement

argumentationElement argumentationElement

:Claim citedElement :Claim
Name: C1 Name: C1
Description: On-board functions | isCitation: true
are acceptably safe Description: On-board functions
are acceptably safe
citedElement #
:ArgumentPackageBinding :Claim
Name: ETCS Integration Name: C1
* safety case Pl isCitation: true
Description: On-board functions
are acceptably safe

; ? source

:Claim target :Assertedinference

Name: C3 >
Description: ETCS is acceptably
safe

source ‘

:Claim

Name: C2

isCitation: true

Description: Track side functions
are acceptably safe

citedElement ‘

:ArgumentPackage :ArgumentPackagelnterface

Name: ETCS Trackside
safety case

n | Name: ETCS Trackside
safety case

argumentationElement

argumentationElement argumentationElement
A .

:Claim citedElement :Claim

Name: C2 > Name: C2

Description: Track side functions isCitation: true

are acceptably safe Description: Track side functions
are acceptably safe

Figure 9: An example ArgumentPackageBinding.



MRT’18, October 2018, Copenhagen, Denmark

The upper part of Figure 9 is the ArgumentPackage of the ETCS
on-board system, and the lower part of Figure 9 is the Argument-
Package of the ETCS Trackside system. The ArgumentPackageBind-
ing (rendered in yellow) is created to bind the ArgumentPackages
of the ETCS parts. Within the ArgumentPackageBinding, an overall
Claim C3 is created, which are backed by the citation Claims C1
and C2, which in turn cites the citation Claims in ETCS On-board
safety case and ETCS Trackside safety case, respectively.

The use of packages, interfaces and bindings are the key mecha-
nisms for the integration of SACM packages. All packages (artifact,
terminology, argument and assurance case) can be integrated using
this approach.

For assurance case models created using SACM to be exchanged
at runtime, there is also a need for automated system integration.
At the moment, arguments in assurance cases are described us-
ing natural language. To enable automation, machine-processable
languages needs to be incorporated in the argument in assurance
cases. With regards to this need, in SACM v2.0 the notion of Multi-
LangString is introduced. Using MultiLangString enables the user to
describe one claim using different languages, including computer
languages. This gives the possibility of automated reasoning for
safety cases.

In addition, for CPS to integrate, there is also a need to express
supply and demand of services for CPS. The supply of service is
provided by default in assurance cases, as assurance cases created
using SACM are able to relate to system models. To express demand
of services, SACM enables the users to create Claims with declara-
tions. For example, to express demand, a Claim can be declared as
needsSupport. To quantify demand and supply, SACM enables the
user to also create ImplementationConstraints and associate them
to elements in the assurance case. By using ImplementationCon-
straints, system assurance engineers are able to express what kind
of guarantees are provided/needed.

The DEIS project, which aims at assuring the dependability of
CPS, uses SACM as the backbone for its core concept - the Open
Dependability Exchange (ODE) meta-model. The ODE is a versatile
meta-model, which enables CPS developers to capture various as-
pects of CPS, including architecture models, HARA models, failure
logic models as well as assurance case models (via usage of SACM).

In our vision, the runtime integration of two CPS (A and B)
includes the following steps:

(1) Exchange of assurance case interfaces for CPS A and CPS
B, which includes the demand/supply of services, as well as
the guarantees needed/provided for these services;

(2) If CPS A questions the soundness of the guarantees provided
by CPS B, CPS B would provide its assurance case;

(3) CPS A performs reasoning of the assurance case of CPS B;

(4) If the assurance case of CPS B is sound, connection between
CPS A and CPS B will be established. An assurance case
binding will be created and maintained locally for both CPS
A and CPS B until they decide to disconnect from each other;

(5) If CPS A continues to question the soundness of the as-
surance case of CPS B, CPS B can choose to send further
evidence, such as related architecture or failure logic models

(6) If the evidence provided by CPS B is sound, step (4) will be
performed. Otherwise, the adaptation process ends.

Ran Wei, Jan Reich, Tim Kelly, and Simos Gerasimou

6 CONCLUSION

In this paper, we talked about the need to shift assurance cases from
conventionally design time documents to automatically exchanged
and integrated runtime models for CPS. We discussed and presented
our knowledge on the Structure Assurance Case Metamodel and
how it can be used to create model-based assurance cases.

SACM lays a foundation for system assurance of CPS at runtime.
Assurance case models for CPS are living models in the sense that
monitoring devices provide essential evidence for assurance cases
and the validity of the assurance cases are constantly verified.

In case an assurance case is invalidated, the CPS carrying it
should make note of it. Therefore, it is anticipated that a CPS would
carry a repository of assurance cases, which helps CPS developers
to better understand what goes wrong at runtime.

CPS system assurance is a new research frontier and has gained
increasing popularity in recent years. Runtime assurance cases
provide a promising solution for assuring safety-related CPS. The
MRT community should be aware of the complexity of CPS and
the need for assurance case models at runtime.

Acknowledgements This work is supported by the European
Union’s Horizon 2020 research and innovation programme through
the DEIS project (grant agreement No 732242).

REFERENCES

[1] Richard Hawkins, Ibrahim Habli, Tim Kelly, and John McDermid. Assurance
cases and prescriptive software safety certification: A comparative study. Safety
science, 59:55-71, 2013.

[2] Mario Trapp, Daniel Schneider, and Peter Liggesmeyer. A safety roadmap to
cyber-physical systems. In Perspectives on the future of software engineering,
pages 81-94. Springer, 2013.

[3] Ran Wei, Tim P Kelly, Richard Hawkins, and Eric Armengaud. Deis: Dependability
engineering innovation for cyber-physical systems. In Federation of International
Conferences on Software Technologies: Applications and Foundations, pages 409-416.
Springer, 2017.

[4] Health and Safety Executive (HSE). Safety Assessment Principles for Nuclear
Facilities. 2006.

[5] UK Ministry of Defence (MoD). Defence Standard 00-56 Issue 4: Safety Management
Requirements for Defence Systems. 2007.

[6] Safety Regulation Group Civil Aviation Authority (CAA). CAP 670 - Air Traffic
Services Safety Requirements. 2007.

[7] Rail Safety and Standards Board. Engineering Safety Management (The Yellow
Book). 2007.

[8] Tim Kelly and Rob Weaver. The goal structuring notation-a safety argument
notation. In Proceedings of the dependable systems and networks 2004 workshop
on assurance cases, page 6. Citeseer, 2004.

[9] GSN Working Group Online - The Goal Structuring Notation. http://www.
goalstructuringnotation.info/. Accessed: 26-04-2018.

[10] Paul Chinneck, David Pumfrey, and Tim Kelly. Turning up the heat on safety
case construction. In Practical Elements of Safety, pages 223-240. Springer, 2004.

[11] Robin Bloomfield and Peter Bishop. Safety and assurance cases: Past, present and
possible future—an adelard perspective. In Making Systems Safer, pages 51-67.
Springer, 2010.

[12] Richard Hawkins, Ibrahim Habli, Dimitris Kolovos, Richard Paige, and Tim Kelly.

Weaving an assurance case from design: a model-based approach. In High

Assurance Systems Engineering (HASE), 2015 IEEE 16th International Symposium

on, pages 110-117. IEEE, 2015.

Structured Assurance Case Metamodel, Object Management Group. https://www.

omg.org/spec/SACM/About-SACM/. Accessed: 06-04-2018.

John Rushby. Runtime certification. In International Workshop on Runtime

Verification, pages 21-35. Springer, 2008.

Daniel Schneider and Mario Trapp. A safety engineering framework for open
adaptive systems. In Self~Adaptive and Self-Organizing Systems (SASO), 2011 Fifth
IEEE International Conference on, pages 89-98. IEEE, 2011.

[13

[14

[15


http://www.goalstructuringnotation.info/
http://www.goalstructuringnotation.info/
https://www.omg.org/spec/SACM/About-SACM/
https://www.omg.org/spec/SACM/About-SACM/

	Abstract
	1 Introduction
	2 Assurance Cases
	3 Model-Based Assurance Cases
	4 The Need for Model-Based Assurance Cases at runtime
	5 SACM Towards Runtime Assurance Case Models
	6 Conclusion
	References

