Predictive Runtime Simulation for building Trust in
Cooperative Autonomous Systems

Emilia Cioroaica, Daniel Schneider, Hanna AlZughbi, Jan Reich, Rasmus Adler, Tobias Braun
Embedded Systems Quality Assurance
Fraunhofer IESE
Kaiserslautern, Germany
{Emilia.Cioroaica, Daniel.Schneider, Hanna.AlZughbi, Jan.Reich, Rasmus.Adler, Tobias.Braun} @iese.fraunhofer.de

Abstract—Future autonomous systems will also be coopera-
tive systems. They will interact with each other, with traffic
infrastructure, with cloud services and with other systems. In
such an open ecosystem trust is of fundamental importance,
because cooperation between systems is key for many innovation
applications and services. Without an adequate notion of trust,
as well as means to maintain and use it, the full potential of
autonomous systems thus cannot be unlocked. In this paper, we
discuss what constitutes trust in autonomous cooperative systems
and sketch out a corresponding multifaceted notion of trust. We
then go on to discuss a predictive runtime simulation approach
as a building block for trust and elaborate on means to secure
this approach.

Index Terms—Automotive, Trust, Trust at Runtime, Safety

I. INTRODUCTION

The future of transportation systems will be characterized
by even higher levels of automation up to the point of
autonomy. Future vehicles will have comprehensive perception
capabilities and intelligence to reason about their perception
and to decide upon adequate driving maneuvers. Presently,
there is a tendency to mistrust any information or service
outside the own vehicle and thus either not use it at all or
only in a very constrained way. From a safety perspective this
seems reasonable, but it cannot be a satisfactory solution for
the future. This is because limiting (a) the perception scope to
the own set of sensors, and (b) the possibilities to influence the
context to the own actuators means limiting the performance
ceiling as well as achievable levels of safety.

Thus, solutions are required to tackle the problem of trust-
worthiness in an open ecosystem, where systems and services
of different provenance come together to render higher level
services and applications in cooperation - which would oth-
erwise be impossible to realize. If such comprehensive and
flexible cooperation is actually enabled, the potential will
be huge. New kinds of services, applications and business
cases will arise, and both performance and safety could be
significantly improved. On a highway, for example, vehicles
driving closely together could benefit from reduced air drag
and fuel consumption. Correspondingly, cooperative platoon-
ing features are envisioned to exploit these benefits. Like that,
many other beneficial collaboration scenarios are presently
discussed and developed that all help to improve performance,
quality and even safety.

In previous work, we introduced runtime approaches to
make systems aware with respect to their safety and corre-
sponding context inter-dependencies [1], [2]. We put emphasis
on modularity and the capability to integrate in the field and,
most importantly, to determine relevant safety properties and
reason about the safety of a dynamically formed cooperation.
This general pattern and characteristics of our approach would,
in our opinion, also be adequate for the problem of trust
assurance stated here. However, our research has been strongly
focused on safety, which is ultimately only one facet of trust
- although an important one. Therefore, in this paper, we set
out to widen the scope and to explore additional facets of trust
as well as corresponding building blocks for our envisioned
runtime trust approach. In particular, we will elaborate on
utilizing predictive runtime simulation for building trust and
discuss as to how such an approach could be secured.

Accordingly, in Section II, we discuss how trust is gen-
erally constituted and go on in Section III to elaborate on
corresponding building blocks of trust, and, in particular, on
our envisioned predictive simulation approach. In Section IV
we present related work and in Section V we discuss the
conclusions and future work.

II. NOTION AND FACETS OF TRUST

Merriam-Webster defines frust (amongst other definitions
less relevant for our case) as (1) assured reliance on the char-
acter, ability, strength, or truth of someone or something, and
(2) one in which confidence is placed. Translating this into the
world of cooperating systems, we define trust (in cooperative
systems) as: Assured reliance on the (promised or rightfully
expected) functional and non-functional properties of a
service/function of a cooperating system.

In relation to assurance, confidence plays a very important
role and some means of corresponding specification (maybe
quantification) and related reasoning capability would clearly
be beneficial. In the field of dependability, Avizienis et al. [3]
have defined trust as "accepted dependance” and have pro-
vided ways for describing dependability. First, dependability
of a system is defined as its ability to avoid service failure
that are more frequent and more severe than acceptable. Fur-
ther, dependability is described via the attributes availability,
reliability, safety, integrity, confidentiality and maintainability.



Security is defined as the combination of availability, integrity
and confidentiality.

From an engineering perspective, when deriving and imple-
menting dependability requirements, the notion of dependabil-
ity via service failures is more practical than the consideration
of dependability attributes. The more severe the consequences
of a service failure are, the lower is the acceptable likelihood of
occurrence. The severity of consequences can be described via
risks. If we consider risk as a potential path from the failure to
a loss event (accident in the automotive domain) and measure
it by combining the likelihood of the path happening with
the severity of the loss, all risks of a service failure derive
an acceptable failure frequency. Such a risk-based notion of
dependability is also applicable in situations when the loss
refers to something else than personal damage or loss of live,
as we will detail in subsection III-A.

We thus consider trust as the justified and commonly
accepted argumentation that all service failures are sufficiently
low with respect to the overall risk of their occurrence. The
argumentation for trust then needs to be based on evidences
and rationales in order to be as objective as possible and
not based on beliefs. Obviously, cultural differences may
lead to different borders of risk acceptance and thus also to
different feelings of trust. Nevertheless, trust should be defined
for larger group of people so that these people commonly
accept the dependence on the product and its services. In
this paper, we focus on the threats of trust and the means to
achieve trust as both significantly changes when we transition
from traditional systems to autonomously acting systems that
collaborate at runtime to render a higher-level functionality
(application service).

III. BUILDING OF TRUST

As trust depends on the functional and non-functional
properties of a system, the engineering methods and techniques
applied during development time clearly have a significant
impact. Ensuring properties of trust affects any typical devel-
opment phase, from requirements elicitation to final validation
testing. Since confidence, justified belief and assurances are
key notions in relation to trust in cooperative autonomous
systems, we suggest to employ methods and techniques from
the field of safety engineering - because in safety engineering
a sound argumentation (bolstered by sufficient evidence) as
to why the safety requirements will be met is front and
center of the engineering artifacts. A suitable and widely
accepted concept for building such an argumentation is the
assurance case [4], which might be specified using GSN (Goal
Structure Notation) [5] or SACM (Structured Assurance Case
Metamodel) [6].

Thus, we envision a trust assurance case as the backbone
artifact for building trust at development time. However, we
argue that for open cooperative systems development time
assurances are often not sufficient (due to context uncertainties
and unknowns) or not acceptable from a performance point of
view (due to worst case assumptions and consequent detri-
mental effects on key system properties such as availability).

For safety, we introduced a corresponding runtime approach in
ConSerts [1]. Moreover, for safety and some additional prop-
erties of dependability, we recently introduced the augmented
concept of digital dependability identities [2].

Apart from checking assumptions made at development
time, it would also be possible at runtime to monitor the
performance of the cooperating systems against the promises
they made. Ultimately, a reputation metric could be introduced
as one additional indicator of the level of trust in a system.
This idea was already brought up in one of the early landmark
papers on autonomic computing [7]. Here the authors propose
storing of information about a system’s reputation in order
to address the need of computing trustworthiness in potential
collaborators. We plan to augment our approach accordingly
and propose storing of reputation on a public ledger, as shown
in Fig. 1.

In this Section, we sketch out means for building trust at
development time and at runtime. Thereby, we put special
emphasis on aspects which, up to now, have been insufficiently
reflected in our runtime approaches.

More precisely, argumentation for trust needs extend at
runtime with provision of mechanisms that assure trust in
situations that are encountered for the first time. In regard
to this, in subsection III-B we present mechanisms used
for argumenting trust at runtime using predictive simulation
methods, evidence of evaluated system properties and data
collection from the field.

A. Formation of vehicle platoon

When they are part of an automotive smart ecosystem [8],
autonomous vehicles can dynamically and securely deploy
software applications (also called smart agents) that can, for
example, enable formation of platoons by enabling secure
exchange of information regarding context and root planning.

In a platoon, multiple vehicles are traveling in the same
direction closely following each other. By joining a platoon,
a vehicle can optimize its fuel consumption and reduce CO2
emissions by closely driving to the vehicle in front. Moreover,
platoons are expected to increase the safety in highways by ad-
vanced vehicle-to-vehicle communication that allow complex
maneuvers.

Towards achievement of the strategic goal of forming pla-
toons, software components that enable collaborations between
vehicles are deployed on these vehicles as black boxes and in
this particular case they implement the operational goal of
sending and receiving information about speed, distance and
state of a vehicle. However, such a software component may
not operate according to its specifications. One extreme cause
of specification violation is the malicious faults contained
within software components. According to Lapries taxonomy
[3], a malicious fault is a fault introduced on purpose by a
developer. When a vehicle provides incorrect service because
of malicious behavior of a software component, the whole
platoon will be affected. For example, if one vehicle receives
the information that the vehicle in front is seven meters away
and starts accelerating and then suddenly brakes because,



through radar it has identified that the minimum distance is
violated, then the vehicles with internal combustion engine
will not save but will increase their fuel consumption. This
happens because of string instability as described in [9], [10].
In the worst case, vehicles in a platoon can even crash into
each other.

Traditionally, if a smart agent passes all verification test
cases, then it is deployed on a vehicle. However, neither
can malicious behavior of software components be detected
through systematic testing, nor can all situations encountered
at runtime be forseen at design time. Therefore, parts of the
evaluation needs to be shifted at runtime as wewill extend in
the next subsection.

B. Building trust at runtime

Building of trust requires additional aspects to be consid-
ered, such as: evaluation of control function’ trustworthiness
and discovering of any malicious behavior, if possible in a
simulated environment. Early detection of malicious behavior
enables activation of fail-over behavior that can bring an
autonomous system in a safe state.

When the actions of one vehicle are the result of the control
decision of the software application running on the vehicle,
as presented in subsection III-A, then these control decisions
need to be predicted. A novel method of building trust in
a software application by predicting its behavior at runtime
in a simulated environment is the one we introduced in [8].
Evaluation in a simulated environment needs to be performed
faster than the wall clock. We call this evaluation predictive
simulation that requires abstractions of the software behavior
received as executable specifications. Running the behavior of
a software component in a predictive simulation gives time to
the system to react to situations that have been discovered to
be dangerous. Using the outputs of system evaluation with a
predictive simulation, safety at runtime can be achieved with
the approach we introduced in [11].

Abstract specifications are created towards the scope of
evaluation. If, for example, scheduling behavior is to be
analyzed, then the abstraction will contain the timing behavior
of the software component. If the function interaction be-
tween different applications needs to be evaluated, then the
abstraction will contain the functional behavior of a software
component. If the protocol of communication needs to be
evaluated, then the abstractions will contain inputs and outputs
of the sofwtare component. Predictive evaluation at runtime
is then performed through a secure execution of the abstract
specifications in a simulated environment. The smart agent
itself is executed within a Trusted Execution Environment
(TEE), of the vehicle’s Embedded Control Unit (ECU). Build-
ing of trust in the overall evaluation requires comparison of
the two executions and creation of a conformity reputation that
provides conformity evidence between the smart agent and its
specifications.

Automatic deployment of smart agents without warning
messages for the driver can be enabled. Given the safety
critical nature of an autonomous vehicle, this mechanism

requires considerations of security aspects. For instance, the
smart agent needs to be signed before deployment (arrow 2"
in Fig. 1). While securing automation, code signing would also
enable the vehicles to verify the authenticity of the software
application, that is, verify its source and check if it has not
been altered after being signed (during transit).

Additionally, the integration between systems is done
through smart the contracts that are implemented on a
blockchain. Smart contracts will include some incentive
within, that adds up to the reputation of the provider, in case
the contract gets mutually signed. Record of reputations of
all providers is stored on the blockchain for future reference.
System providers with high reputation are, therefore, more
likely to be trusted in the future.

3
l:l Simulation
—>| D
ECU
Test Scenario 1
Comformity Reputation

Fig. 1. Infrastructure that enables building trust in automonous collaborative
vehicles

Test Scenario 2

The vehicle that wants to join the platoon, would also needs
to check if the platoon is controlled by a trusted entity. To
achieve this, we propose the use of digital certificates, which
are being issued by the car manufacturer (or a consortium of
manufacturers) acting as a Certificate Authority (CA). Upon
joining the platoon, the vehicle would first check against
the digital certificate of the leading vehicle and accordingly
decides if it trusts the CA that issued that certificate.

Trust also needs to be build based on evidence about
relevance of both verification scenarios and verified system
properties. Computation-based trust is formed around repu-
tation of systems behavior. Information about reputation can
come as a recommendation from a different party, and then
the source and the target community for reputation need to be
compatible [12]. One way of achieving compatibility between
communities is by creating dedicated environments where
test cases can be collected, shared and reputation of system
computed and analyzed based on same criteria. This enables
creation of a common framework for building arguments
towards trust at runtime.

At the system level, a particular effort in this regard is the
concept of Digital Dependability Identities (DDI) [2]. A DDI
is a container capable of containing, analyzing, manipulating
and reasoning about models of many relevant dependability
aspects such as hazard, safety analysis and security threat
models at once. This is possible due to the formal inte-



gration of these aspects within the DDI. Due to the DDI’s
extensability, adding validation scenario models to the DDI
allows a more comprehensive reasoning about trust assurance.
Collection of scenarios where software functions are verified
at design time, derived from situations encountered at runtime
creates evidence about the relevance of test situations and
builds trust in relevance of test cases. In Fig. 1 the collections
of test scenarios from the field is depicted with arrow 17

IV. RELATED WORK

Different understandings of trust and reputation have been
applied in research in the past years. These understandings
lead to a various number of definitions. Most of them are
centered around terms like “firm belief”, ”decision making”,
”scoring”, “ranking”, “behavior information” and “feedback”.
Together with the definitions, there are multiple methods
used to compute trust and reputation values. Some methods
calculate trust value from reputation parameters, the others
perform reputation calculation by aggregating trust parameters.
Mainly scholars differentiate between belief-based trust [13],
[14], [15] and computation-based trust [16], [17] and the need
for argumenting trust has been presneted in [18].

Trustworthiness of a trustee was defined as a voluntary
behavior of not taking advantage of a trustor’s vulnerable posi-
tion when making self-serving decisions that conflict with the
trustor’s objectives [19]. In context of safety critical situations
in the automotive domain, trustworthiness of a collaborator
cannot be granted by default, it needs to be computed. In order
to support computation of trust our hierarchical classification
of goals evaluation (presented in subsection III-A) is based on
the hierarchical nature of decision making of Strategical de-
cisions, tactical decisions and operational decisions described
in [20], [21].

V. CONCLUSIONS AND FUTURE WORK

Trust assurance will be fundamental to the success of
cooperative autonomous systems. Due to unknowns and un-
certainties at design time, trust assurance requires a shift
of assurance measures into runtime. In this paper, we first
sketched out a definition of trust inspired by the risk-based
notion of dependability and centered it around engineering
activities. At development time, the engineering activities are
centered around the argumentation of relevant trust properties
within a trust assurance case. At runtime, they comprise
dynamic checks and reasoning (e.g. as supported by DDI)
and, in addition, might comprise means such as predictive
simulation, which we discussed in a bit more detail. The
prediction is centered towards discovery of malicious behavior
of smart agents and enables autonomous systems to start a
fail over behavior in case of identified risks. Future work
will include implementation of methods for building trust at
runtime.

ACKNOWLEDGMENT

This work has been funded by the German Ministry of
Education and Research (BMBF) through the research project
CrESt (Collaborative Embedded Systems).

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

D. Schneider and M. Trapp, “Conditional safety certificates in open
systems,” in Proceedings of the 1st workshop on critical automotive
applications: robustness & safety. ACM, 2010, pp. 57-60.

D. Schneider, M. Trapp, Y. Papadopoulos, E. Armengaud, M. Zeller,
and K. Hofig, “Wap: digital dependability identities,” in 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2015, pp. 324-329.

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions
on dependable and secure computing, vol. 1, no. 1, pp. 11-33, 2004.
R. Hawkins, I. Habli, T. Kelly, and J. McDermid, “Assurance cases and
prescriptive software safety certification: A comparative study,” Safety
science, vol. 59, pp. 55-71, 2013.

T. Kelly and R. Weaver, “The goal structuring notation—a safety argu-
ment notation,” in Proceedings of the dependable systems and networks
2004 workshop on assurance cases. Citeseer, 2004, p. 6.

Object Management Group, “Structured Assurance Case Metamodel
(SACM) 2.0, https://www.omg.org/spec/SACM/, 2018, [Online; ac-
cessed 17-March-2019].

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, no. 1, pp. 41-50, 2003.

E. Cioroaica, T. Kuhn, and B. Buhnova, “(Do not) trust in ecosys-
tems,” in Proceedings of the 4Ith International Conference on
Software Engineering (ICSE-NIER 2019). ACM, 05 2019, pre-
print available at https://www.researchgate.net/publication/331498836
_Do_Not_Trust_in_Ecosystems.

L. Cui, J. Hu, B. B. Park, and P. Bujanovic, “Development of a simula-
tion platform for safety impact analysis considering vehicle dynamics,
sensor errors, and communication latencies: Assessing cooperative adap-
tive cruise control under cyber attack,” Transportation Research Part C:
Emerging Technologies, vol. 97, pp. 1-22, 2018.

J.-N. Meier, A. Kailas, R. Adla, G. Bitar, E. Moradi-Pari, O. Abuchaar,
M. Ali, M. Abubakr, R. Deering, U. Ibrahim et al., “Implementation
and evaluation of cooperative adaptive cruise control functionalities,”
IET Intelligent Transport Systems, vol. 12, no. 9, pp. 1110-1115, 2018.
R. Adler, P. Feth, and D. Schneider, “Safety engineering for autonomous
vehicles,” in Dependable Systems and Networks Workshop, 2016 46th
Annual IEEE/IFIP International Conference on. 1EEE, 2016, pp. 200—
205.

S. Ruohomaa and L. Kutvonen, “Trust management survey,” in Interna-
tional Conference on Trust Management. Springer, 2005, pp. 77-92.
I. Serov and M. Leitner, “An experimental approach to reputation in
e-participation,” in 2016 International Conference on Software Security
and Assurance (ICSSA). 1EEE, 2016, pp. 37-42.

N. Dessi, B. Pes, and M. G. Fugini, “A distributed trust and reputation
framework for scientific grids,” in 2009 Third International Conference
on Research Challenges in Information Science. 1EEE, 2009, pp. 265—
274.

R. de Oliveira Albuquerque, F. F. Cohen, J. L. T. Mota, and R. T.
de Sousa Junior, “Analysis of a trust and reputation model applied
to a computational grid using software agents,” in 2008 International
Conference on Convergence and Hybrid Information Technology. 1EEE,
2008, pp. 196-203.

B. Zong, F. Xu, J. Jiao, and J. Lv, “A broker-assisting trust and reputation
system based on artificial neural network,” in 2009 IEEE International
Conference on Systems, Man and Cybernetics. 1EEE, 2009, pp. 4710-
4715.

H. Rahimi and H. El Bakkali, “Towards a new design for trust reputation
system,” in 2012 International Conference on Multimedia Computing
and Systems. 1EEE, 2012, pp. 943-948.

M. Gharib and P. Giorgini, “Analyzing trust requirements in socio-
technical systems: a belief-based approach,” in IFIP Working Conference
on The Practice of Enterprise Modeling. Springer, 2015, pp. 254-270.
O. Ozer and Y. Zheng, “Trust and trustworthiness,” 2017.

E. Hollnagel, A. Nédbo, and 1. V. Lau, “A systemic model for driver-in-
control,” 2003.

H. H. Van der Molen and A. M. Bétticher, “A hierarchical risk model
for traffic participants,” Ergonomics, vol. 31, no. 4, pp. 537-555, 1988.



