
www.embedded-world.eu

Safety in Cooperative Automated
Systems

 How to ensure critical system properties despite system and context uncertainties

Daniel Schneider, Rasmus Adler, Patrik Feth, Jan Reich, Tobias Braun
Embedded Systems Quality Assurance

Fraunhofer IESE
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

name.surname@iese.fraunhofer.de

Abstract—Cooperative Automated Systems enable new kinds
of applications and services. Corresponding visions stretch across
virtually any domain of embedded systems and it is obvious that
there lies a huge potential for economic, ecologic and societal
improvements and success. However, to unlock this potential we
first need to overcome diverse engineering challenges. Most
importantly, we need to be able to ensure safety of such systems.
Unfortunately, established safety assurance methods and
standards do not live up to this task as they have been designed
with closed deterministic systems in mind. This paper structures
safety assurance challenges of cooperative automated systems and
provides an overview and discussion on corresponding solution
approaches.

Keywords—safety; automated systems; autonomous systems;
cooperative systems; systems of systems;

I. INTRODUCTION
There is an overarching trend in the application domains of

embedded systems towards ever higher levels of automation
and interconnection. Both these trends are actually tightly
interrelated, because automation can benefit greatly from
interconnection and thus cooperation between systems.
Through cooperation, the perception scope of constituent
systems can be augmented and the perception performance and
quality can be improved. At the same time, collaboration allows
rendering applications and services, which could not be
rendered by single systems alone. As examples, consider the
orchestration of agricultural machines in a harvesting operation
or the optimization of traffic flow through an intelligent traffic
light assistant.

Clearly, such cooperative automated systems harbor
enormous potential regarding new types of services and
applications. However, before compelling visions and ideas can
be turned into actual economic and societal success, we still
need to tackle a series of important engineering challenges. One
key challenge is the assurance of safety, because established
methods and standards operate on the base assumption that
systems and relevant system contexts are known and analyzable
completely at development time. This base assumption does no
longer hold.

On the one hand, in highly automated systems, behaviors
are becoming more and more complex, might in parts even be
AI-based, and system context and its perception play an
increasingly important role. This strongly complicates safety
related analysis and argumentation at development time,
because there are uncertainties and unknowns which are hard to
tackle. Ultimately, based on traditional approaches alone, this
leads to worst case assumptions and thus less than optimal
system performance.

On the other hand, the aspect of cooperation and
corresponding dynamic integration of systems adds additional
challenges. Since safety properties of collaborating systems and
consumed 3rd party services might not be known, cooperation
will be constrained or even not be utilized at all. This again puts
a limiting factor on the huge potential which comprehensive
cooperation is offering. Additionally, the growing interaction
and collaboration introduces (externally) accessible interfaces.
These interfaces increase the number of potential attack vectors,
which might be abused by malicious attackers. Therefore,
safety of cooperative systems is tightly related to security and
the impacts between security and safety have to be considered
carefully during design. Thus, also the integration of safety and
security engineering is another challenge needed to be solved
to develop safe cooperative automated systems. This paper sets
out to structure the challenges in safety assurance of
cooperative automated systems and briefly presents and
discusses respective solution approaches. First, in Section II the
applicability of current standards as well as open gaps are
discussed. In particular, it is elaborated that merely considering
functional safety is not sufficient. As additional dimensions,
safety of the intended functionality (SOTIF) as well as the
engineering of a safe nominal behavior must be considered. In
Section III, the paper goes on to discuss how to deal with
complex automation behavior and utilization of AI behaviors
to, for instance, realize the perception of the environment.
Section IV then shifts the focus on openness and modular
runtime safety approaches. Section V finally outlines our
integrative vision of dynamic risk management. We conclude
in Section VI.

II. LIMITS OF CURRENT STANDARDIZATION
Safety standards have different scopes. The scope defines the
focused type of technology (software, hardware, mechanics and
so on) and the focused domain (medical, avionic, railway, and
so on). Apart from some novel standards like Safety Of The
Intended Functionality (SOTIF) [1], the scope says nothing
about the focused degree of automation and cooperation. This
is simply because all systems were closed and had low degree
of automation when the standards have been developed.
Accordingly, current safety standards provide insufficient
guidance for developing cooperative automated systems. In the
following, we investigate which new topics and questions come
up when we focus on high automation level and dynamic
cooperation.

A. Issues with higher automation levels
(Traditional) non-automated systems support humans to

implement a plan or decision that the human has made based on
some observations. Accordingly, the human is responsible for
monitoring the current situation and deriving safe decisions
from his observations. The systems only needs to follow the
control commands provided at the human-machine interface.
Specifying safe system behavior is relatively simple in this case
as complex situation awareness and decision making is not
necessary for achieving safety. Thus, safety assurance can focus
on the handling of malfunctioning behavior (deviations from
the specified system behavior) and assume that safety is
achieved if the system behaves as intended by his operator.
Accordingly, functional safety which is “the part of the overall
safety that depends on a system or equipment operating
correctly in response to its inputs” [2] makes up a huge part of
the overall safety assurance. Considering the world of
standardization, functional safety is really good addressed by
IEC 61508 and its domain specific derivations: ISO 26262 for
road vehicles, IEC 62304 for medical software, EN 50156 for
fire alarms, the series of EN 5012x for railway, IEC 61511 for
process industry, IEC 61513 for nuclear power, DO-178B for
avionic, ISO 25119 for agriculture and so on.

As illustrated in the left box in the Figure below, safety
assurance for automated systems requires however much more
than functional safety.

Figure 1. DDI: Aspects of safety and current coverage by

standards (here: automotive)

First, it has to be defined what safe behavior is. For
automated driving, it is for instance necessary to define safe
vehicle behavior for all driving scenarios. Some rules like the
one for the distance to the vehicle in front might be adopted

from existing traffic rules but the existing rules are not
sufficient. In special situations, it might be necessary to break
the traffic rules in order to avoid an accident. Second, after
defining safe behavior, it is necessary to select an appropriate
set of sensors and actuators to implement the safe behavior. In
this step, one has to deal with functional insufficiencies like
the insufficiency to detect something with a camera if it is dark.
The handling of functional insufficiencies goes also beyond the
scope of functional safety. As illustrated in the Figure,
recommendations with respect to functional insufficiencies are
given by the new SOTIF standard which enhances the
functional safety standard ISO 26262. However, standards
and/or laws for safe automated driving behavior are still under
development. One approach to fill this gap and get a more
complete view on the topic of safety is described in [3].

B. Issues with cooperation and collaboration
Another aspect that is not sufficiently addressed by safety

standards is the increasing cooperation and collaboration of
systems. In a cooperation scenario, systems work together but
it is already fixed at design time how they work together. In
collaboration scenario, systems negotiate at runtime how they
work together. Cooperation is in general the easier case for
assuring safety as it is more predictable. But even if it is
completely predictable, safety standards provide insufficient
guidance. For instance, imagine a back-end server that provides
an automated driving vehicle with some information about its
environment. If the same information would be provided by a
sensor, then ISO 26262 could provide sufficient guidance with
respect to software and hardware development. However, as the
software and hardware of a backend-sever is totally different,
this guidance can hardly be transferred. Standards like ISO
20077 (Extended vehicle (ExVe) methodology), ISO 11783
(Tractors and machinery for agriculture and forestry—Serial
control and communications data network) and ISO 11783
(Tractors and machinery for agriculture and forestry—Serial
control and communications data network) address some issues
of cooperation and collaboration but they do not focus on
safety.

To realize cooperative and collaboration scenarios, wireless
communication channels have to be integrated either replacing
classical bus systems (e.g. CAN, FlexRay, LIN) or connecting
single system components or systems (via gateways) to remote
components. Regarding the exchange of information, the
aforementioned safety related standards focus on faults or
effects of faults (e.g. ISO26262-6) and do not consider
malicious attackers, who actively try to identify and exploit
weaknesses. For the example, a blocked access to the
communication channel is considered by ISO26262-6, but not
blocking selective exchange information by disturbing the
transmissions of selected frames/information, while letting
other pass, i.e. an “intelligent” attack. However, even blocking
the whole communication is a huge problem, since for wireless
communication systems, jamming the communication channels
does not require (direct) physical access and might reduce
performance or prevent cooperation. Regarding wireless
communication, in general the main security requirements for
(sensor) wireless networks [4] have to be considered (data
confidentiality, availability, data integrity, authenticity and
self-organization) to enable a safe and reliable cooperation.

www.embedded-world.eu

III. ASSURING COMPLEX BEHAVIORS
Systems of higher automation levels are responsible of

planning a safe behavior without human assistance. In the
automotive domain, this is the case starting from Automation
Level 3 [5]. From this level, the driver is allowed to take the
eyes off the driving environment. Consequently, the human
operator does not constantly monitor the appropriateness of the
decisions of the machine controlling the vehicle’s motion. From
a safety perspective, we see two major challenges with that:
First, in Safety Engineering we need to give the possibility to
assess the risk of the nominal behavior to come to a decision
whether a machine is behaving safely or not. Second, if
Machine Learning is used for realizing the behavior, we need
to be able to produce Deep Neural Networks of a sufficient level
of quality.

A. Risk of the Nominal Behavior
One of the early steps in Safety Engineering is to conduct a risk
assessment of the function under development. For hazards
caused by component failures, an established process exists to
address the requirements of the ISO 26262 standard on the
Hazard and Risk Assessment. To claim completeness of the
analysis, the process is based on the assessment of worst-case
situations for component failures and analyzing the potential
consequences in these worst-case situations. Applying the same
philosophy to the analysis of nominal behavior would mean to
assess the risk of a certain behavior, e.g. a command to steer
left, in the worst-case situation, i.e. the situation in which this
behavior is least adequate. For any possible behavior, we can
easily think of a situation in which this behavior would lead to
a very severe accident and where there is a very low chance of
avoiding this accident. This means the result of the analysis is
pre-determined, which renders the analysis useless. Thus, the
philosophy applied for current risk assessment of component
failures cannot be transferred to the assessment of the risk of
the nominal behavior. To claim completeness of the analysis,
i.e. the consideration of a certain behavior in all relevant
situations, we thus have to follow a different approach. We
anticipate that the assessment of the risk of the nominal
behavior will in future equal the assessment of more general,
situation-agnostic properties that can be calculated at runtime
of the system and consequently in a concrete and actually
relevant driving situation. Mobileye is currently advertising
such a concept under the term of Responsibility Sensitive
Safety (RSS) [6]. We address this issue with Dynamic Risk
Assessment as we sketch below. However, we see that more
effort needs to be invested to develop a sophisticated and
commonly accepted method for the assessment of the risk of the
nominal behavior. We currently invest this effort in the
SECREDAS project (http://secredas.eu/).

B. Trustworthy Machine Learning
To realize complex system behavior, Machine Learning is
playing a major role. Functionalities as the situation perception
as well as motion planning are increasingly performed by
trained Deep Neural Networks (DNN) as they outperform
traditional algorithms. However, there are currently serious
quality problems with such DNNs. According to a study

presented in [7], machine-learning based systems cause 65% of
all disengagements of self-driving vehicles that currently
undergo road testing. We see the major reason for that in the
lack of an established body of knowledge for the development
of high quality DNNs. For the development of software, there
exists an established set of best practices. These practices
involve inter alia requirements on the development process, as
e.g. the use of a certain subset of a programming language and
techniques for the review of code or requirements on the testing
process. Safety standards as the ISO 26262 contain catalogues
of these best practices and give recommendations which
methods shall be applied for which level of criticality of the
software. However, most of these techniques are specific to
software and cannot be transferred directly to the special nature
of machine learning. [8] contains a more detailed consideration
of this. Even though Deep Neural Networks have been
developed for many years now, there is no catalog of best
practices available for the development of DNNs. In recent
research projects, we are working towards the development of
such a catalog to be able to give clear advice to the developers
in case a Deep Neural Network shall be applied in a safety-
critical context.

IV. ASSURING COOPERATION
The main challenge in ensuring safety of cooperative

automated systems (and safety-critical V2X scenarios in
general) is to deal with uncertainties and unknowns with respect
to the cooperation partners. In other words, one might not know
what kind of guarantees come along with a certain information
or service of a 3rd party system. Still, it is clearly our aim to
utilize such information and services for safety-critical
applications, because there is such a huge potential in terms of
new applications, improved performance and also improved
safety. As an example for the latter, consider systems warning
other systems regarding obstacles, systems orchestrating at a
crossroad, and so on. Unfortunately, the lack of knowledge
regarding external services and their safety properties typically
leads to worst-case assumptions, which in turn severely
constrain performance, or even lead to the decision not to use
external services or information at all.

A straightforward solution to this problem is to enable
systems to explicitly negotiate their safety-related properties at
runtime. This implies that we establish runtime safety models
describing these properties for a (constituent) system and
standardize a protocol for their negotiation, thus enabling “just-
in-time certification” as it has been envisioned by Rushby [9].

A. Conditional Safety Certificates
Conditional Safety Certificates (ConSerts) [10] are an

approach to do exactly that. ConSerts operate on the level of
safety requirements. They are specified at development time
based on a sound and comprehensive safety argumentation (e.g.
an assurance case). They conditionally certify that the
associated system will provide specific safety guarantees.
Conditions are related to the fulfillment of specific demands
regarding the environment what is checked during runtime. In
the same way as “static” certificates, ConSerts shall be issued
by safety experts, independent organizations, or authorized
bodies (depending on the respective application domain) after a

stringent manual check of the safety argument. To this end, it is
mandatory to prove all claims regarding the fulfillment of
provided safety guarantees by means of suitable evidence and
to provide adequate documentation of the overall argument –
including the external demands and their implications.

Let us briefly illustrate ConSerts based on the example used
in [11]. In the agricultural domain, tractor implement
management (TIM) enables implements to assume control over
the tractor functions, such as setting the vehicle speed or the
steering angle. To do this in the best possible way, the
implement might consume sensor information from the tractor
of from auxiliary third party sensors, such as a swath scanner or
a GPS. Consequently, TIM scenarios are scenarios of
cooperative automated systems, realized by cooperation of
different systems of different manufacturers.

For the engineering of ConSerts in this example the role of
the implement manufacturer shall be assumed. The goal of the
manufacturer is to develop a round baler with TIM support.
From a functional point of view, it is clear (due to existing
standards) how the interfaces between the potential participants
look like and how they are to be used. However, the implement
manufacturer does not know about the safety properties of these
functions.

From a safety point of view, the engineering of the baling
application starts top-down with an application-level hazard
and risk analysis. Assume that the agricultural manufacturers
agreed by convention that during the operation of a TIM
application, the application (and thus the application
manufacturer) has the responsibility for the overall cooperation.
Therefore, the safety engineering goal is to ensure adequate
safety not only for the TIM baling application or for the
implement, but for the whole cooperation of systems that will
be rendering the cooperative application service at runtime.
Application-level hazards of the TIM baling application could
correspondingly comprise the tractor having an unwanted
acceleration or steering during TIM baling. Causes might be
located in the TIM baling application itself or in the tractor or
in other cooperating systems (e.g. a third party sensor). Causes
in the TIM baling application and the implement are tackled by
traditional safety engineering. Causes outside the system under
development are translated into ConSert demands and runtime
evidences that are to be evaluated at runtime. Thanks to the
ConSert-based modularization it is thereby sufficient to only
consider the direct dependencies of the system under
development on its environment. The runtime evaluation can be
done bottom up, i.e. the system at the leafs of the cooperation
hierarchy determine their guarantees and propagate them up
until the root (here: the TIM baling application) can determine
its guarantees. Based on these guarantees, the cooperation
might be parameterized (e.g. constrain maximum speed) to
ensure safety.

The ability to dynamically manage the system performance
while always ensuring safety is a strong point of ConSerts.
From changes in system guarantees due to wear and tear to
changing weather conditions, anything can potentially be

1 DEIS: Dependability Engineering Innovation for Cyber

Physical Systems (CPS); www.deis-project.eu

considered. Thus, it is no longer necessary to work based on
worst case assumptions (because you cannot know the actual
conditions during operation), with ConSerts systems become
aware regarding the safety-relevant conditions of their
environments and can monitor them continuously.

Of course, this flexibility comes at a certain price because
additional engineering is required. The engineering and
specification of ConSerts and its translation into a machine-
readable representation can be a complex task, which should be
assisted by adequate tools. By proving an integrated simulations
environment, the specification of ConSerts during design time
can be supported. Furthermore, simulations enable early testing
(fault injections, scenario with complex situations, etc.) and
therefore can reduce development costs. Besides this, the
results of simulations can also be used as (additional) evidence
for the assurance case.

Overall, ConSerts are a relatively lightweight runtime safety
approach and they are not far from traditional safety
engineering. The main difference being that unknown context
is structured into a series of foreseen variants, which are then
specified in a runtime model to be resolved at runtime. While
this already provides significant gains in terms of flexibility and
realizable system performance (compared to a conservative
approach), there is still further potential. It is conceivable, that
not only a conditional certificate is shifted into runtime but
maybe the safety argument (e.g. as dynamic assurance case)
itself. In [12], we structure and discuss these options.

B. Digital Dependability Identities
A fundamental problem in dependability engineering is that

models exist for many different dependability aspects, which
are naturally related through each other by referring to the same
system under development. These models are however not
related formally with each other so far and thus, no
comprehensive reasoning about different system dependability
aspects is possible at the same time.

Figure 2. DDI: SACM-based [14] [16] assurance case

formally related to its associated dependability models.

The Horizon 2020 DEIS project1 has the goal to advance the
idea of integrating various safety models. As a core concept, the

http://www.deis-project.eu/

www.embedded-world.eu

Digital Dependability (DDI) has been introduced [11] [13]. In
general, a Digital Identity is defined as “the data that uniquely
describes a person or a thing and contains information about the
subject's relationships” [14]. Applying this idea, a DDI contains
all the information that uniquely describes the dependability
characteristics of a system or component.

A DDI is a living dependability assurance case formally
related to all models influencing the satisfaction of a sufficient
level of dependability (cf. Figure 2). It contains an expression
of dependability requirements for the respective component or
system, arguments of how these requirements are met, and
evidence in the form of safety analysis artifacts that substantiate
arguments. Concretely, these artifacts consist of the system’s or
component’s functional behavior, its hazards including risk
assessment attributes, its fault propagations in shape of
component fault tree and FMEA models, as well as
dependability requirements describing the safety concept
leading to a sufficient risk reduction and therefore acceptable
dependability.

DDIs are produced during design, issued when the
component is released, and is then continually maintained over
the complete lifetime of a component or system. On the one
hand, the exchange format notion of DDIs enables automated
engineering support for the synthesis and integration of
components into systems during design time considering
classical multi-tier supply structures. On the other hand, DDIs
explicitly consider the transition from very detailed design time
representations into more formal and less detailed DDIs
supporting the dynamic integration of systems to "systems of
systems" in the field (cf. Figure 3). Runtime DDIs are in a first
step based on ConSerts, which have been described in the
previous section.

Figure 3. Transitioning from design time engineering

automation based on DDIs to runtime dependability reasoning

C. Importance of Security for Safety
Given the trend towards more and more interconnection,

there are also more and more potential attack vectors to be
exploited by malicious attackers. Thus, one could say that

without security, a cooperative automated system cannot be
considered safe. As a consequence, security must be taken into
equation as part of (or at least with clear interfaces to) the safety
engineering activities.

As already outlined, interconnections require some kind of
communication to exchange information. However, every
accessible interface also adds additional potential attack
vectors. While safety focus on faults and their effects, security
is centered on human-made (malicious) faults [17]. Here, an
attacker is considered with a specific motivation, able to adapt
in relation to the systems and its vulnerabilities (and even to
possible counter-measures) [18]. By successfully gaining
access over a system or component, a malicious attacker might
also be able to bypass safety counter-measures, since these have
been (from the point of view of a safety engineer) designed to
address random and systematic faults and not to “compete” with
an attacker.

Therefore a holistic development approach combining
safety and security engineering activities as well as their
implications to each other’s should be the goal. While there are
many similarities (e.g. risk as fundamental concept, coverage of
the whole life cycle – design and use, related techniques like
fault and attack trees [19]), there are also elementary
differences such as the assessment of hazards versus threats in
form of intelligent attackers [18].

Research projects, such as SECREDAS try to address these
issues. SECREDAS is a European project launched in May,
2018 with focus on developing reference architectures,
components and verification approaches considering the
intertwining of safety, security and also privacy of cooperative
automated systems. The outcomes should not only be concepts,
but also concrete reusable technology elements and design
patterns for their usage (e.g. an extension of Conditional Safety
Certificates for unsecure environments as well as a framework
for security-safety verification and testing).

V. TOWARDS DYNAMIC RISK MANAGEMENT
Our dynamic risk management “umbrella-concept”

(potentially) integrates many of the approaches outlined in this
paper. The concept is illustrated by Figure 2. On the left hand
side of the figure, we have different types of relevant
environmental context information, which are to be acquired in
different ways. There can be sensor-based information provided
by the cooperating system of the mission, cloud-based
information (such as comprehensive maps or information, i.e.
provided by systems not involved in the currently considered
mission) and also context acquired by other means such as a
direct operator input. Ideally, the context information derived
from the environment would be associated with quality and
confidence levels to enable more reliable as well as
sophisticated analyses and reasoning, enabling a better overall
performance. On the right hand side of the figure, the current
context of system capabilities is determined (orange arrows).
The underlying approach are ConSerts that have been briefly
described in Section IV.

Dynamic risk assessment is based on both, the external
context information and the internal context of a system. The
current capabilities and guarantees of the system are in turn the

basis for determining dynamic risk control measures. They are
based on dynamic reconfiguration/self-adaptation of the
involved system. The dynamic adaptation has the goal to adapt

a system’s capabilities to be fit for the current context situation.
If this cannot be achieved, the system has to be forced into a fail
safe state.

Figure 4. Dynamic Risk Assessment and Dynamic Risk Control

At the same time, while preserving superordinate
dependability properties, the mission performance can be
continuously optimized. Technically this is achieved by
deriving and analyzing the present context and providing the
best suitable set of functionality for it. For instance, in the case
of a mobile service robot all high-level functionality needed for
the present service should be activated while other could be
disabled, like maintenance procedures. Such an optimization
can take place on different levels depending on its scope.
Operational optimization or fail-safe mechanisms will be
carried out locally, while strategic optimization is planned on
higher abstraction levels and propagated to the single system
entities.

Overall, this scheme realizes a typical self-adaptation
control loop (cf. MAPE-MART/MAPE-K [20]). Based on
context monitoring we identify changes in the environment or
the system and conduct dynamic risk assessment (i.e., analysis)
to plan and execute corresponding changes (i.e., dynamic risk
control). This cycle is running continuously based on runtime
models such as ConSerts or DDI. Our vision of comprehensive
runtime models and corresponding multi-aspect optimization is
further elaborated in [21].

VI. CONCLUSION
In this paper, we structured fundamental challenges of

cooperative automated systems and pointed out respective
solution ideas and research directions. We started with a brief
analysis and discussion of the related standardization landscape
and identified open gaps with respect to the considered class of
systems. We then put the limelight on the safety engineering
challenges related to complex automation behaviors and the
utilization of AI behaviors. Afterwards we put the aspect of
cooperation in the foreground and reported on recent work in
the direction of runtime safety and dependability models.
Finally, we sketched out our vision of comprehensive dynamic

management of cooperative systems based on models at
runtime.

Even though there are, as we pointed out in this paper,
diverse ideas as to how the challenges of cooperative automated
systems can be tackled, there are still many open questions.
Further research needs to be done and common understanding
and guidance needs to be established between all relevant
stakeholders (e.g. society, legislation, industry, research) before
the full potential of this promising class of systems can be
unlocked.

ACKNOWLEDGMENT
The work presented in this paper is supported by the DEIS

project – Dependability Engineering Innovation for
Automotive CPS. This project has received funding from the
European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 732242.

REFERENCES
[1] ISO PAS 21448, “SOTIF-Safety Of The Intended Functionality“, 2019.
[2] https://www.iec.ch/functionalsafety/explained/”, accessed at 22.01.2019
[3] Engineering a Safer World: Systems Thinking Applied to Safety

(Engineering Systems) (13 January 2012) by Nancy G. Leveson
[4] Adrian Perrig, John Stankovic, David Wagner, “Security in Wireless

Sensor Networks” Communications of the ACM, Page53-57, 2004.
[5] SAE International, “Automated Driving Levels of Driving Automation

are Defined in New SAE International Standard J3016”, 2014.
[6] Shalev-Shwartz, Shai; Shammah, Shaked; Shashua, Amnon, “On a

Formal Model of Safe and Scalable Self-driving Cars”, Mobileye, 2017.
[7] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk and R. K. Iyer, "Hands

Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over
a Million Miles of Field Data", 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Luxembourg
City, 2018, pp. 586-597.

https://www.iec.ch/functionalsafety/explained/

www.embedded-world.eu

[8] Czarnecki, K.: “Operational Design Domain for Automated Driving
Systems - Taxonomy of Basic Terms”, Waterloo Intelligent Systems
Engineering Lab (WISE), 2018.

[9] J. Rushby. “Just-in-Time Certification.” in Proc 12th IEEE International
Conference on the Engineering of Complex Computer Systems
(ICECCS), Auckland, New Zealand, pp. 15‐24, 2007.

[10] D. Schneider, M. Trapp. ”Conditional Safety Certification of Open
Adaptive Systems.” ACM Trans. Auton. Adapt. Syst. 8, 2, Article 8, 20
pages, 2013.

[11] D. Schneider et al. “WAP: Digital dependability identities.” In: 2015
IEEE 26th International Symposium on Software Reliability Engineering
(ISSRE). Gaithersbury, MD, USA, pp. 324–329.

[12] M. Trapp, D. Schneider. “Safety Assurance of Open Adaptive Systems–
A Survey.” Models@run.time, 279-318, Springer International
Publishing, 2014.

[13] DEIS Consortium: Engineering Framework for the Generation and
INtegratino of Digital Dependability Identities, Whitepaper, http://deis-
project.eu/index.php?id=704, accessed: 22-01-2019.

[14] Windley, P., “Digital Identity,” O'Reilly Media, 2005
[15] Object Management Group (OMG): Structured Assurance Case

Metamodel (SACM), https://www.omg.org/spec/SACM/About-SACM/,
accessed: 17-01-2019.

[16] R.Wei, T.Kelly, R. Hawkins, Model Based System Assurance Using the
Structured Assurance Case Metamodel, Journal of Systems and Software,
Elsevier, unpublished.

[17] Avizienis A, Laprie J-C, Randell B, Landwehr C., “Basic concepts and
taxonomy of dependable and secure computing”, IEEE Transactions on
Dependable and Secure Computing 2004;1(1):11–33.

[18] L. Piètre-Cambacédès, M. Bouissou: Cross-fertilization between safety
and security engineering, Reliability Engineering & System Safety,
Volume 110, Pages 110-126, 2013.

[19] Weiss JD, “A system security engineering process”, Proceedings of the
14th National computer security conference (NCSC), Washington DC,
USA, 1991. p. 572–81.

[20] B. Cheng et al., Using models at runtime to address assurance for self-
adaptive systems. In Models@ run. time (pp. 101-136). Springer, Cham,
2014.

[21] D. Schneider, M. Trapp, “B-space: dynamic management and assurance
of open systems of systems.” Journal of Internet Services and
Applications, 9(1), 15, 2018.

	I. Introduction
	II. Limits of current standardization
	A. Issues with higher automation levels
	B. Issues with cooperation and collaboration

	III. Assuring complex behaviors
	A. Risk of the Nominal Behavior
	B. Trustworthy Machine Learning

	IV. Assuring Cooperation
	A. Conditional Safety Certificates
	B. Digital Dependability Identities
	C. Importance of Security for Safety

	V. Towards Dynamic Risk Management
	VI. Conclusion
	Acknowledgment
	References

