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Abstract—Cooperative Automated Systems enable new kinds 
of applications and services. Corresponding visions stretch across 
virtually any domain of embedded systems and it is obvious that 
there lies a huge potential for economic, ecologic and societal 
improvements and success. However, to unlock this potential we 
first need to overcome diverse engineering challenges. Most 
importantly, we need to be able to ensure safety of such systems. 
Unfortunately, established safety assurance methods and 
standards do not live up to this task as they have been designed 
with closed deterministic systems in mind. This paper structures 
safety assurance challenges of cooperative automated systems and 
provides an overview and discussion on corresponding solution 
approaches. 
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I.  INTRODUCTION 
There is an overarching trend in the application domains of 

embedded systems towards ever higher levels of automation 
and interconnection. Both these trends are actually tightly 
interrelated, because automation can benefit greatly from 
interconnection and thus cooperation between systems. 
Through cooperation, the perception scope of constituent 
systems can be augmented and the perception performance and 
quality can be improved. At the same time, collaboration allows 
rendering applications and services, which could not be 
rendered by single systems alone. As examples, consider the 
orchestration of agricultural machines in a harvesting operation 
or the optimization of traffic flow through an intelligent traffic 
light assistant.  

Clearly, such cooperative automated systems harbor 
enormous potential regarding new types of services and 
applications. However, before compelling visions and ideas can 
be turned into actual economic and societal success, we still 
need to tackle a series of important engineering challenges. One 
key challenge is the assurance of safety, because established 
methods and standards operate on the base assumption that 
systems and relevant system contexts are known and analyzable 
completely at development time. This base assumption does no 
longer hold. 

On the one hand, in highly automated systems, behaviors 
are becoming more and more complex, might in parts even be 
AI-based, and system context and its perception play an 
increasingly important role. This strongly complicates safety 
related analysis and argumentation at development time, 
because there are uncertainties and unknowns which are hard to 
tackle. Ultimately, based on traditional approaches alone, this 
leads to worst case assumptions and thus less than optimal 
system performance. 

On the other hand, the aspect of cooperation and 
corresponding dynamic integration of systems adds additional 
challenges. Since safety properties of collaborating systems and 
consumed 3rd party services might not be known, cooperation 
will be constrained or even not be utilized at all. This again puts 
a limiting factor on the huge potential which comprehensive 
cooperation is offering. Additionally, the growing interaction 
and collaboration introduces (externally) accessible interfaces. 
These interfaces increase the number of potential attack vectors, 
which might be abused by malicious attackers. Therefore, 
safety of cooperative systems is tightly related to security and 
the impacts between security and safety have to be considered 
carefully during design. Thus, also the integration of safety and 
security engineering is another challenge needed to be solved 
to develop safe cooperative automated systems. This paper sets 
out to structure the challenges in safety assurance of 
cooperative automated systems and briefly presents and 
discusses respective solution approaches. First, in Section II the 
applicability of current standards as well as open gaps are 
discussed. In particular, it is elaborated that merely considering 
functional safety is not sufficient. As additional dimensions, 
safety of the intended functionality (SOTIF) as well as the 
engineering of a safe nominal behavior must be considered. In 
Section III, the paper goes on to discuss how to deal with 
complex automation behavior and utilization of AI behaviors 
to, for instance, realize the perception of the environment. 
Section IV then shifts the focus on openness and modular 
runtime safety approaches. Section V finally outlines our 
integrative vision of dynamic risk management. We conclude 
in Section VI. 



II. LIMITS OF CURRENT STANDARDIZATION 
Safety standards have different scopes. The scope defines the 
focused type of technology (software, hardware, mechanics and 
so on) and the focused domain (medical, avionic, railway, and 
so on). Apart from some novel standards like Safety Of The 
Intended Functionality (SOTIF) [1], the scope says nothing 
about the focused degree of automation and cooperation. This 
is simply because all systems were closed and had low degree 
of automation when the standards have been developed. 
Accordingly, current safety standards provide insufficient 
guidance for developing cooperative automated systems. In the 
following, we investigate which new topics and questions come 
up when we focus on high automation level and dynamic 
cooperation.  

A. Issues with higher automation levels 
(Traditional) non-automated systems support humans to 

implement a plan or decision that the human has made based on 
some observations. Accordingly, the human is responsible for 
monitoring the current situation and deriving safe decisions 
from his observations. The systems only needs to follow the 
control commands provided at the human-machine interface. 
Specifying safe system behavior is relatively simple in this case 
as complex situation awareness and decision making is not 
necessary for achieving safety. Thus, safety assurance can focus 
on the handling of malfunctioning behavior (deviations from 
the specified system behavior) and assume that safety is 
achieved if the system behaves as intended by his operator. 
Accordingly, functional safety which is “the part of the overall 
safety that depends on a system or equipment operating 
correctly in response to its inputs” [2] makes up a huge part of 
the overall safety assurance. Considering the world of 
standardization, functional safety is really good addressed by 
IEC 61508 and its domain specific derivations: ISO 26262 for 
road vehicles, IEC 62304 for medical software, EN 50156 for 
fire alarms, the series of EN 5012x for railway, IEC 61511 for 
process industry, IEC 61513 for nuclear power, DO-178B for 
avionic, ISO 25119 for agriculture and so on.  

As illustrated in the left box in the Figure below, safety 
assurance for automated systems requires however much more 
than functional safety.  

 
Figure 1. DDI: Aspects of safety and current coverage by 

standards (here: automotive) 

First, it has to be defined what safe behavior is. For 
automated driving, it is for instance necessary to define safe 
vehicle behavior for all driving scenarios. Some rules like the 
one for the distance to the vehicle in front might be adopted 

from existing traffic rules but the existing rules are not 
sufficient. In special situations, it might be necessary to break 
the traffic rules in order to avoid an accident. Second, after 
defining safe behavior, it is necessary to select an appropriate 
set of sensors and actuators to implement the safe behavior. In 
this step, one has to deal with functional insufficiencies like 
the insufficiency to detect something with a camera if it is dark. 
The handling of functional insufficiencies goes also beyond the 
scope of functional safety. As illustrated in the Figure, 
recommendations with respect to functional insufficiencies are 
given by the new SOTIF standard which enhances the 
functional safety standard ISO 26262. However, standards 
and/or laws for safe automated driving behavior are still under 
development. One approach to fill this gap and get a more 
complete view on the topic of safety is described in [3].  

B. Issues with cooperation and collaboration 
Another aspect that is not sufficiently addressed by safety 

standards is the increasing cooperation and collaboration of 
systems. In a cooperation scenario, systems work together but 
it is already fixed at design time how they work together. In 
collaboration scenario, systems negotiate at runtime how they 
work together. Cooperation is in general the easier case for 
assuring safety as it is more predictable. But even if it is 
completely predictable, safety standards provide insufficient 
guidance. For instance, imagine a back-end server that provides 
an automated driving vehicle with some information about its 
environment. If the same information would be provided by a 
sensor, then ISO 26262 could provide sufficient guidance with 
respect to software and hardware development. However, as the 
software and hardware of a backend-sever is totally different, 
this guidance can hardly be transferred. Standards like ISO 
20077 (Extended vehicle (ExVe) methodology), ISO 11783 
(Tractors and machinery for agriculture and forestry—Serial 
control and communications data network) and ISO 11783 
(Tractors and machinery for agriculture and forestry—Serial 
control and communications data network) address some issues 
of cooperation and collaboration but they do not focus on 
safety.   

To realize cooperative and collaboration scenarios, wireless 
communication channels have to be integrated either replacing 
classical bus systems (e.g. CAN, FlexRay, LIN) or connecting 
single system components or systems  (via gateways) to remote 
components. Regarding the exchange of information, the 
aforementioned safety related standards focus on faults or 
effects of faults (e.g. ISO26262-6) and do not consider 
malicious attackers, who actively try to identify and exploit 
weaknesses. For the example, a blocked access to the 
communication channel is considered by ISO26262-6, but not 
blocking selective exchange information by disturbing the 
transmissions of selected frames/information, while letting 
other pass, i.e. an “intelligent” attack. However, even blocking 
the whole communication is a huge problem, since for wireless 
communication systems, jamming the communication channels 
does not require (direct) physical access and might reduce 
performance or prevent cooperation. Regarding wireless 
communication, in general the main security requirements for 
(sensor) wireless networks [4] have to be considered (data 
confidentiality, availability, data integrity, authenticity and 
self-organization) to enable a safe and reliable cooperation.  
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III. ASSURING COMPLEX BEHAVIORS 
Systems of higher automation levels are responsible of 

planning a safe behavior without human assistance. In the 
automotive domain, this is the case starting from Automation 
Level 3 [5]. From this level, the driver is allowed to take the 
eyes off the driving environment. Consequently, the human 
operator does not constantly monitor the appropriateness of the 
decisions of the machine controlling the vehicle’s motion. From 
a safety perspective, we see two major challenges with that: 
First, in Safety Engineering we need to give the possibility to 
assess the risk of the nominal behavior to come to a decision 
whether a machine is behaving safely or not. Second, if 
Machine Learning is used for realizing the behavior, we need 
to be able to produce Deep Neural Networks of a sufficient level 
of quality. 

A. Risk of the Nominal Behavior 
One of the early steps in Safety Engineering is to conduct a risk 
assessment of the function under development. For hazards 
caused by component failures, an established process exists to 
address the requirements of the ISO 26262 standard on the 
Hazard and Risk Assessment. To claim completeness of the 
analysis, the process is based on the assessment of worst-case 
situations for component failures and analyzing the potential 
consequences in these worst-case situations. Applying the same 
philosophy to the analysis of nominal behavior would mean to 
assess the risk of a certain behavior, e.g. a command to steer 
left, in the worst-case situation, i.e. the situation in which this 
behavior is least adequate. For any possible behavior, we can 
easily think of a situation in which this behavior would lead to 
a very severe accident and where there is a very low chance of 
avoiding this accident. This means the result of the analysis is 
pre-determined, which renders the analysis useless. Thus, the 
philosophy applied for current risk assessment of component 
failures cannot be transferred to the assessment of the risk of 
the nominal behavior. To claim completeness of the analysis, 
i.e. the consideration of a certain behavior in all relevant 
situations, we thus have to follow a different approach. We 
anticipate that the assessment of the risk of the nominal 
behavior will in future equal the assessment of more general, 
situation-agnostic properties that can be calculated at runtime 
of the system and consequently in a concrete and actually 
relevant driving situation. Mobileye is currently advertising 
such a concept under the term of Responsibility Sensitive 
Safety (RSS) [6]. We address this issue with Dynamic Risk 
Assessment as we sketch below. However, we see that more 
effort needs to be invested to develop a sophisticated and 
commonly accepted method for the assessment of the risk of the 
nominal behavior. We currently invest this effort in the 
SECREDAS project (http://secredas.eu/).  

B. Trustworthy Machine Learning 
To realize complex system behavior, Machine Learning is 
playing a major role. Functionalities as the situation perception 
as well as motion planning are increasingly performed by 
trained Deep Neural Networks (DNN) as they outperform 
traditional algorithms. However, there are currently serious 
quality problems with such DNNs. According to a study 

presented in [7], machine-learning based systems cause 65% of 
all disengagements of self-driving vehicles that currently 
undergo road testing. We see the major reason for that in the 
lack of an established body of knowledge for the development 
of high quality DNNs. For the development of software, there 
exists an established set of best practices. These practices 
involve inter alia requirements on the development process, as 
e.g. the use of a certain subset of a programming language and 
techniques for the review of code or requirements on the testing 
process. Safety standards as the ISO 26262 contain catalogues 
of these best practices and give recommendations which 
methods shall be applied for which level of criticality of the 
software. However, most of these techniques are specific to 
software and cannot be transferred directly to the special nature 
of machine learning. [8] contains a more detailed consideration 
of this. Even though Deep Neural Networks have been 
developed for many years now, there is no catalog of best 
practices available for the development of DNNs. In recent 
research projects, we are working towards the development of 
such a catalog to be able to give clear advice to the developers 
in case a Deep Neural Network shall be applied in a safety-
critical context. 

IV. ASSURING COOPERATION 
The main challenge in ensuring safety of cooperative 

automated systems (and safety-critical V2X scenarios in 
general) is to deal with uncertainties and unknowns with respect 
to the cooperation partners. In other words, one might not know 
what kind of guarantees come along with a certain information 
or service of a 3rd party system. Still, it is clearly our aim to 
utilize such information and services for safety-critical 
applications, because there is such a huge potential in terms of 
new applications, improved performance and also improved 
safety. As an example for the latter, consider systems warning 
other systems regarding obstacles, systems orchestrating at a 
crossroad, and so on. Unfortunately, the lack of knowledge 
regarding external services and their safety properties typically 
leads to worst-case assumptions, which in turn severely 
constrain performance, or even lead to the decision not to use 
external services or information at all. 

A straightforward solution to this problem is to enable 
systems to explicitly negotiate their safety-related properties at 
runtime. This implies that we establish runtime safety models 
describing these properties for a (constituent) system and 
standardize a protocol for their negotiation, thus enabling “just-
in-time certification” as it has been envisioned by Rushby [9].  

A. Conditional Safety Certificates 
Conditional Safety Certificates (ConSerts) [10] are an 

approach to do exactly that. ConSerts operate on the level of 
safety requirements. They are specified at development time 
based on a sound and comprehensive safety argumentation (e.g. 
an assurance case). They conditionally certify that the 
associated system will provide specific safety guarantees. 
Conditions are related to the fulfillment of specific demands 
regarding the environment what is checked during runtime. In 
the same way as “static” certificates, ConSerts shall be issued 
by safety experts, independent organizations, or authorized 
bodies (depending on the respective application domain) after a 



stringent manual check of the safety argument. To this end, it is 
mandatory to prove all claims regarding the fulfillment of 
provided safety guarantees by means of suitable evidence and 
to provide adequate documentation of the overall argument – 
including the external demands and their implications.  

Let us briefly illustrate ConSerts based on the example used 
in [11]. In the agricultural domain, tractor implement 
management (TIM) enables implements to assume control over 
the tractor functions, such as setting the vehicle speed or the 
steering angle. To do this in the best possible way, the 
implement might consume sensor information from the tractor 
of from auxiliary third party sensors, such as a swath scanner or 
a GPS. Consequently, TIM scenarios are scenarios of 
cooperative automated systems, realized by cooperation of 
different systems of different manufacturers.  

For the engineering of ConSerts in this example the role of 
the implement manufacturer shall be assumed. The goal of the 
manufacturer is to develop a round baler with TIM support. 
From a functional point of view, it is clear (due to existing 
standards) how the interfaces between the potential participants 
look like and how they are to be used. However, the implement 
manufacturer does not know about the safety properties of these 
functions.  

From a safety point of view, the engineering of the baling 
application starts top-down with an application-level hazard 
and risk analysis. Assume that the agricultural manufacturers 
agreed by convention that during the operation of a TIM 
application, the application (and thus the application 
manufacturer) has the responsibility for the overall cooperation. 
Therefore, the safety engineering goal is to ensure adequate 
safety not only for the TIM baling application or for the 
implement, but for the whole cooperation of systems that will 
be rendering the cooperative application service at runtime. 
Application-level hazards of the TIM baling application could 
correspondingly comprise the tractor having an unwanted 
acceleration or steering during TIM baling. Causes might be 
located in the TIM baling application itself or in the tractor or 
in other cooperating systems (e.g. a third party sensor). Causes 
in the TIM baling application and the implement are tackled by 
traditional safety engineering. Causes outside the system under 
development are translated into ConSert demands and runtime 
evidences that are to be evaluated at runtime. Thanks to the 
ConSert-based modularization it is thereby sufficient to only 
consider the direct dependencies of the system under 
development on its environment. The runtime evaluation can be 
done bottom up, i.e. the system at the leafs of the cooperation 
hierarchy determine their guarantees and propagate them up 
until the root (here: the TIM baling application) can determine 
its guarantees. Based on these guarantees, the cooperation 
might be parameterized (e.g. constrain maximum speed) to 
ensure safety.  

The ability to dynamically manage the system performance 
while always ensuring safety is a strong point of ConSerts. 
From changes in system guarantees due to wear and tear to 
changing weather conditions, anything can potentially be 
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considered. Thus, it is no longer necessary to work based on 
worst case assumptions (because you cannot know the actual 
conditions during operation), with ConSerts systems become 
aware regarding the safety-relevant conditions of their 
environments and can monitor them continuously. 

Of course, this flexibility comes at a certain price because 
additional engineering is required. The engineering and 
specification of ConSerts and its translation into a machine-
readable representation can be a complex task, which should be 
assisted by adequate tools. By proving an integrated simulations 
environment, the specification of ConSerts during design time 
can be supported. Furthermore, simulations enable early testing 
(fault injections, scenario with complex situations, etc.) and 
therefore can reduce development costs. Besides this, the 
results of simulations can also be used as (additional) evidence 
for the assurance case. 

Overall, ConSerts are a relatively lightweight runtime safety 
approach and they are not far from traditional safety 
engineering. The main difference being that unknown context 
is structured into a series of foreseen variants, which are then 
specified in a runtime model to be resolved at runtime. While 
this already provides significant gains in terms of flexibility and 
realizable system performance (compared to a conservative 
approach), there is still further potential. It is conceivable, that 
not only a conditional certificate is shifted into runtime but 
maybe the safety argument (e.g. as dynamic assurance case) 
itself. In [12], we structure and discuss these options.  

B. Digital Dependability Identities 
A fundamental problem in dependability engineering is that 

models exist for many different dependability aspects, which 
are naturally related through each other by referring to the same 
system under development. These models are however not 
related formally with each other so far and thus, no 
comprehensive reasoning about different system dependability 
aspects is possible at the same time. 

 
Figure 2. DDI: SACM-based [14] [16] assurance case 

formally related to its associated dependability models. 

The Horizon 2020 DEIS project1 has the goal to advance the 
idea of integrating various safety models. As a core concept, the 

http://www.deis-project.eu/
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Digital Dependability (DDI) has been introduced [11] [13]. In 
general, a Digital Identity is defined as “the data that uniquely 
describes a person or a thing and contains information about the 
subject's relationships” [14]. Applying this idea, a DDI contains 
all the information that uniquely describes the dependability 
characteristics of a system or component.  

A DDI is a living dependability assurance case formally 
related to all models influencing the satisfaction of a sufficient 
level of dependability (cf. Figure 2). It contains an expression 
of dependability requirements for the respective component or 
system, arguments of how these requirements are met, and 
evidence in the form of safety analysis artifacts that substantiate 
arguments. Concretely, these artifacts consist of the system’s or 
component’s functional behavior, its hazards including risk 
assessment attributes, its fault propagations in shape of 
component fault tree and FMEA models, as well as 
dependability requirements describing the safety concept 
leading to a sufficient risk reduction and therefore acceptable 
dependability. 

DDIs are produced during design, issued when the 
component is released, and is then continually maintained over 
the complete lifetime of a component or system. On the one 
hand, the exchange format notion of DDIs enables automated 
engineering support for the synthesis and integration of 
components into systems during design time considering 
classical multi-tier supply structures. On the other hand, DDIs 
explicitly consider the transition from very detailed design time 
representations into more formal and less detailed DDIs 
supporting the dynamic integration of systems to "systems of 
systems" in the field (cf. Figure 3). Runtime DDIs are in a first 
step based on ConSerts, which have been described in the 
previous section. 

 
Figure 3. Transitioning from design time engineering 

automation based on DDIs to runtime dependability reasoning 

C. Importance of Security for Safety 
Given the trend towards more and more interconnection, 

there are also more and more potential attack vectors to be 
exploited by malicious attackers. Thus, one could say that 

without security, a cooperative automated system cannot be 
considered safe. As a consequence, security must be taken into 
equation as part of (or at least with clear interfaces to) the safety 
engineering activities.  

As already outlined, interconnections require some kind of 
communication to exchange information. However, every 
accessible interface also adds additional potential attack 
vectors. While safety focus on faults and their effects, security 
is centered on human-made (malicious) faults [17]. Here, an 
attacker is considered with a specific motivation, able to adapt 
in relation to the systems and its vulnerabilities (and even to 
possible counter-measures) [18]. By successfully gaining 
access over a system or component, a malicious attacker might 
also be able to bypass safety counter-measures, since these have 
been (from the point of view of a safety engineer) designed to 
address random and systematic faults and not to “compete” with 
an attacker. 

Therefore a holistic development approach combining 
safety and security engineering activities as well as their 
implications to each other’s should be the goal. While there are 
many similarities (e.g. risk as fundamental concept, coverage of 
the whole life cycle – design and use, related techniques like 
fault and attack trees [19]), there are also elementary 
differences such as the assessment of hazards versus threats in 
form of intelligent attackers [18]. 

Research projects, such as SECREDAS try to address these 
issues. SECREDAS is a European project launched in May, 
2018 with focus on developing reference architectures, 
components and verification approaches considering the 
intertwining of safety, security and also privacy of cooperative 
automated systems. The outcomes should not only be concepts, 
but also concrete reusable technology elements and design 
patterns for their usage (e.g. an extension of Conditional Safety 
Certificates for unsecure environments as well as a framework 
for security-safety verification and testing). 

V. TOWARDS DYNAMIC RISK MANAGEMENT 
Our dynamic risk management “umbrella-concept” 

(potentially) integrates many of the approaches outlined in this 
paper. The concept is illustrated by Figure 2. On the left hand 
side of the figure, we have different types of relevant 
environmental context information, which are to be acquired in 
different ways. There can be sensor-based information provided 
by the cooperating system of the mission, cloud-based 
information (such as comprehensive maps or information, i.e. 
provided by systems not involved in the currently considered 
mission) and also context acquired by other means such as a 
direct operator input. Ideally, the context information derived 
from the environment would be associated with quality and 
confidence levels to enable more reliable as well as 
sophisticated analyses and reasoning, enabling a better overall 
performance. On the right hand side of the figure, the current 
context of system capabilities is determined (orange arrows). 
The underlying approach are ConSerts that have been briefly 
described in Section IV.  

Dynamic risk assessment is based on both, the external 
context information and the internal context of a system. The 
current capabilities and guarantees of the system are in turn the 



basis for determining dynamic risk control measures. They are 
based on dynamic reconfiguration/self-adaptation of the 
involved system. The dynamic adaptation has the goal to adapt 

a system’s capabilities to be fit for the current context situation. 
If this cannot be achieved, the system has to be forced into a fail 
safe state.  

 
Figure 4. Dynamic Risk Assessment and Dynamic Risk Control 

At the same time, while preserving superordinate 
dependability properties, the mission performance can be 
continuously optimized. Technically this is achieved by 
deriving and analyzing the present context and providing the 
best suitable set of functionality for it. For instance, in the case 
of a mobile service robot all high-level functionality needed for 
the present service should be activated while other could be 
disabled, like maintenance procedures. Such an optimization 
can take place on different levels depending on its scope. 
Operational optimization or fail-safe mechanisms will be 
carried out locally, while strategic optimization is planned on 
higher abstraction levels and propagated to the single system 
entities. 

Overall, this scheme realizes a typical self-adaptation 
control loop (cf. MAPE-MART/MAPE-K [20]). Based on 
context monitoring we identify changes in the environment or 
the system and conduct dynamic risk assessment (i.e., analysis) 
to plan and execute corresponding changes (i.e., dynamic risk 
control). This cycle is running continuously based on runtime 
models such as ConSerts or DDI. Our vision of comprehensive 
runtime models and corresponding multi-aspect optimization is 
further elaborated in [21].  

VI. CONCLUSION 
In this paper, we structured fundamental challenges of 

cooperative automated systems and pointed out respective 
solution ideas and research directions. We started with a brief 
analysis and discussion of the related standardization landscape 
and identified open gaps with respect to the considered class of 
systems. We then put the limelight on the safety engineering 
challenges related to complex automation behaviors and the 
utilization of AI behaviors. Afterwards we put the aspect of 
cooperation in the foreground and reported on recent work in 
the direction of runtime safety and dependability models. 
Finally, we sketched out our vision of comprehensive dynamic 

management of cooperative systems based on models at 
runtime.  

Even though there are, as we pointed out in this paper, 
diverse ideas as to how the challenges of cooperative automated 
systems can be tackled, there are still many open questions. 
Further research needs to be done and common understanding 
and guidance needs to be established between all relevant 
stakeholders (e.g. society, legislation, industry, research) before 
the full potential of this promising class of systems can be 
unlocked.  
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